Introduction to Modern Physics : Special Relativity

Lecture 4: Minkowski's four-dimensional space-time

Hermann Minkowski's opening words during the $80^{\text {th }}$ Assembly of German Natural Scientists and Physicians in September 1908.

The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. Their tendency is a radical one. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve independence.

Lorentz transformation :

Relativistic coefficients: $\beta=\frac{V}{c} \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}$.
The Lorentz transformation in Cartesian coordinates is given by :

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(x-\beta c t) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

In matrix notation :

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

Lorentz transformation :

Defining the rapidity as : $\alpha=\operatorname{artanh} \beta$ one obtains: $\gamma=\cosh \alpha$; $\beta \gamma=\sinh \alpha$ (exo I)

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
-\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

It looks like a rotation that mixes space and time, in fact ct, but as c is constant, ct is a time variable that possesses length units.
Space rotations keep $r^{2}=x^{2}+y^{2}+z^{2}$ invariant. Likewise, LTs keep $s^{2}=c^{2} t^{2}-r^{2}$ invariant. (exo I)
s^{2} looks like a distance in a four-dimensional space: the Minkowski space. s^{2} is called the Minkowskian squared interval, s being the spacetime interval. s^{2} is a relativistic invariant.

Minkowski space and four-vectors :

Spacetime diagram: only time and x dimensions are represented. The two other space dimensions which are perpendicular to the relative motion are not changed. Consequently, they are not represented.

A point in the Minkowski space is called an event. It is a four-vector: a four dimensional vector.

The Minkowski space is then endowed with a scalar product of four-vectors which defines the squared interval: $\quad A \cdot B=a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}=a_{0} b_{0}-\vec{a} \cdot \vec{b}$
scalar product of four-vectors
in MinKowski space
scalar product of space vectors
in Euclidean space

Johann Collot
collot@in2p3.fr http://lpsc.in2p3.fr/collot L2 Modern Physics - Special Relativity

Minkowski space and interval types:

-if $\mathrm{E}^{2}=s^{2}=c^{2} t^{2}-x^{2}>0$, the interval is time-like: 0 \& E may be connected by a physical worldline. O and E are causally connected. In that situation, one may always find an IRS where E is at rest, then $x=0$ and $t_{0}{ }^{2}=s^{2} / c^{2}$, which is called the proper time.
-If $E^{2}=s^{2}=c^{2} t^{2}-x^{2}<0$, the interval is space-like : a light ray emitted from O will never reach E.
O and E are causally unconnected. In that situation, one may always find an IRS where E is synchronous to $0, t$ remaining $=0$, then $x_{0}{ }^{2}=-s^{2}$, which is called the proper length.
-If $E^{2}=s^{2}=c^{2} t^{2}-x^{2}=0$, the interval is light-like.
Johann Collot

Minkowski space and interval types:

Squared interval is given by: $(E-O)^{2}$

Unit time and unit spatial length Lorentz hyperbolas:

Consequences

- time-like intervals can have their spatial ordering reversed (symmetry of hyperbola around ct axis) by an IRS change
- space-like intervals can have their time ordering reversed (symmetry of hyperbola around x axis) by an IRS change
$x^{2}=\sqrt{c^{2} t^{2}+1}$
Hyperbolas are the images of the unit four-vectors by LTs (change of IRS).

4-d velocity : four-velocity

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \quad \vec{v} \quad c t \left\lvert\, d s^{2}=d E^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=c^{2} d t^{2}\left(1-\left(\frac{d \vec{r}}{d t}\right)^{2} \frac{1}{c^{2}}\right)=c^{2} d t^{2}\left(1-\frac{v^{2}}{c^{2}}\right)\right. \\
& =\frac{c^{2}}{\gamma^{2}} d t^{2} \\
& \text { Comobile IRS is bound to the particle at } t \text {. In this } \\
& \text { IRS, } d t=d t_{0} \text { (proper time) and } d x=0 \text {. } \\
& d s^{2}=\frac{c^{2}}{\gamma^{2}} d t^{2}=c^{2} d t_{0}^{2} \Rightarrow d t=\gamma d t_{0} \quad d t_{0} \text { is a Lorentz Invariant. }
\end{aligned}
$$

The velocity V in the Minkowski space is defined as: $d E / d t_{0}$
$\left.\left(c d t / d t_{0}\right) \left\lvert\, \begin{array}{c}\gamma c\end{array}\right.\right) \quad V(\gamma c, \gamma \vec{v}) \quad V^{2}=\gamma^{2}\left(c^{2}-v^{2}\right)=\gamma^{2} c^{2}\left(1-\beta^{2}\right)=c^{2}$
The modulus of all four-velocities is equal to c which is a constant. In SR, all objects travel with a velocity c but in a four-dimensional space.

To learn more:

-Modern Physics for Scientists \& Engineers, Stephen Thornton \& Andrew Rex

- Special Relativity : A first encounter, Domenico Giulini, Oxford University Press
-Introduction à la Relativité : Johann Collot, http://lpsc.in2p3.fr/collot
-Relativité restreinte, Claude Semay et Bernard Silvestre-Brac, Dunod
-The principle of relativity, Dover, New York
-Albert Einstein's special theory of relativity, A. Miller, Springer
-The Feynman lectures on physics, volume I, Addison-Wesley

