Physics in the XXI ${ }^{\text {st }}$ century

Johann Collot

Laboratoire de Physique Subatomique et de Cosmologie de Grenoble

Université Grenoble Alpes, CNRS/IN2P3

GRENOBLE | MODANE

Grenoble Alpes

Matter

By far the most active field of physics with interfaces \& applications to many domains : mathematics, chemistry, biology, geology, medicine, engineering, industry, every day life....

Quantum matter is a pleonasm, since matter, its structure and many of its properties are implicitly quantum manifestations/processes

Quantum mechanics, atomic and nuclear physics explained the periodic table

H^{1}		Periodic Table of the Elements © wwwelementsdatabase.com																				
Li	Be						post-transition metalsnonmetalsnoble gaseshalogensmetaloids					B	C^{6}	N^{7}	0	F^{9}	Ve^{10}					
Na	Mg^{12}						Al	Si^{14}	P^{15}	S^{16}	Cl^{17}	Ar^{18}										
K^{19}	Ca^{20}	Sc^{21}	Ti^{22}	V^{23}	Cr^{24}	Mn^{25}						Fe^{26}	Co^{27}	Ni^{28}	Cu	Zn^{30}	Ga	Ge^{32}	As^{33}	Se^{34}	Br^{35}	Kr
Rb	Sr^{38}	Y^{36}	z^{40}	Nb^{41}	Mo^{42}	Tc^{43}	$\begin{gathered} 44 \\ \mathrm{Ru} \\ \hline \end{gathered}$	Rh^{45}	Pd^{46}	Ag^{47}	C^{48}	$\ln ^{49}$	$\begin{array}{\|c\|} \hline 50 \\ S n \\ \hline \end{array}$	$S b^{51}$	Te^{52}	1^{53}	$x{ }^{54}$					
Cs^{55}	Ba^{56}	57-71	$\begin{array}{\|c\|} \hline 72 \\ \mathrm{Hf}^{2} \end{array}$	$T a^{73}$	w^{74}	Re^{75}	$\begin{array}{\|c\|} \hline 76 \\ \text { Os } \end{array}$	$\mid \mathrm{Ir}^{77}$	Pt^{78}	$\begin{array}{r} 79 \\ \mathrm{Au} \end{array}$	$\begin{array}{\|c\|} \hline 80 \\ \mathrm{Hg} \end{array}$	Ti^{81}	Pb^{82}	$B i^{83}$	$\begin{array}{\|c\|} \hline 84 \\ \hline \mathrm{Po} \\ \hline \end{array}$	At ${ }^{85}$	Rn					
Fr^{87}	Ra ${ }^{88}$	89-103	$\begin{array}{\|c\|} \hline 104 \\ R f \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ D^{105} \\ \hline \end{array}$	Sg^{106}	Bh^{107}	$\begin{array}{\|c\|} \hline 108 \\ \mathrm{Hs} \\ \hline \end{array}$	$\begin{gathered} 109 \\ \mathrm{Mt}^{109} \\ \hline \end{gathered}$	Ds^{110}	Rg^{111}	$\begin{gathered} 112 \\ C_{n} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 113 \\ \hline \text { Uut } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 114 \\ \hline \mathrm{FI}^{\prime} \\ \hline \end{array}$	$\begin{array}{\|c\|} 115 \\ \text { Uup } \end{array}$	Lv^{116}	Uus	Uu0					

lanthanoids	La ${ }^{57}$	Ce^{58}	Pr^{59}	Nd ${ }^{60}$	Pm ${ }^{61}$	Sm ${ }^{62}$	Eu ${ }^{63}$	Gd ${ }^{64}$	Tb ${ }^{65}$	Dy	Ho	Er	Tm	Yb	Lu
actinoids	$A C^{89}$	Th ${ }^{90}$	Pa	U^{92}	$N p^{93}$	Pu	$\begin{gathered} 95 \\ \hline \mathrm{Am} \end{gathered}$	Cm^{96}	$B k^{97}$	Cf^{98}	$E s{ }^{99}$	Fm	$\begin{aligned} & 101 \\ & M d \end{aligned}$	${ }^{102}$	Lr

Big Bang Nucleosynthesis (BBN) of light elements

Heavier elements

~ 99,9 \% of matter in universe is made of hot plasma

Heavier elements

Proton-proton chain

Triple alpha chain
CNO cycle (for hotter and more massive stars)

Heavier elements

Kilonova

Fusion of two neutron stars producing a supernova with r-process Discovered in 2017 : GWI70817 by gravitational wave astronomy. Birth of multi-messenger astronomy!

Kilonova AT 2017gfo in NGC 4993

Optical spectra measured over 12 days after GWI70817 measured at VLT

Heavy elements - R-Process

Matter elements are mainly big bang relic and star dust

			$\begin{gathered} \text { Big } \\ \substack{\text { Bang } \\ \text { Busion }} \end{gathered}$			Dying low-mass stars		Exploding massiv			Human synthesis No stable isdopes						He			
$\stackrel{L 1}{3}$	${ }_{4}^{\mathrm{Be}}$		$\begin{aligned} & \text { Cosmic } \\ & \text { ray } \\ & \text { fission } \end{aligned}$			Merging neutron stars		Exploding white dwarts				$\begin{aligned} & \mathrm{B} \\ & 5 \end{aligned}$		$\underset{\sim}{N}$	\bigcirc	F	$\underset{10}{\mathrm{Ne}}$			
Na_{11}	Mg_{12}								AI	Si	$\underset{i 5}{P}$	${ }_{16}$	Cl_{17}	Ar 18						
K	Ca_{20}	Sc_{21}	$\underset{22}{T i}$	V 23	Cr_{24}	$\underset{25}{\mathrm{Mn}}$	Fe_{26}				Co_{27}	$\underset{28}{\mathrm{Ni}}$	Cu_{20}	Zn_{30}	$\underset{31}{\mathrm{Ga}}$	Ge_{32}	${ }_{33}$	Se_{34}	${ }_{35}$	${ }_{36}^{\mathrm{Kr}}$
Rb		$\begin{gathered} Y \\ 39 \end{gathered}$	$\begin{aligned} & \mathrm{Zr} \\ & 40 \end{aligned}$	Nb_{41}	Mo	$\underset{43}{\mathrm{Tc}}$	$\begin{aligned} & \mathrm{Ru} \\ & 44 \end{aligned}$	${ }_{45}^{\mathrm{Rn}}$	$\begin{aligned} & \mathrm{Pd}_{46} \end{aligned}$	Ag_{4}	$\underset{48}{\mathrm{Cd}}$	In	Sn	$\begin{aligned} & \mathrm{Sb} \\ & 51 \end{aligned}$	$\begin{gathered} \mathrm{Te} \\ { }_{52} \end{gathered}$	53	Xe 54			
Cs_{55}	Ba		Hf_{72}	Ta_{73}	$\underset{74}{ }$	Re_{75}	Os_{76}	${ }_{77}$	${ }_{78}$	Al_{79}	$\underset{80}{\mathrm{Hg}}$	${ }_{81} 1$	Pb_{82}	${ }_{83}{ }_{8}$	${ }_{84}$	${ }_{85}^{\text {At }}$	${ }_{86}$			
	Ra_{88}																			
				${ }_{58}$	Pr_{59}	$\frac{\mathrm{Nd}}{60}$	$\begin{aligned} & \mathrm{Pm} \\ & \hline 61 \end{aligned}$	Sm_{62}	$\frac{\mathrm{Eu}}{63}$	$\underset{6 d}{\mathrm{Gd}}$	$\begin{gathered} \mathrm{Tb} \\ 65 \end{gathered}$	Dy	${ }_{67}{ }^{\text {c }}$	${ }^{\mathrm{Er}}$	Tm_{69}	Yb_{70}	Lu_{71}			
			$\underset{89}{A_{8}}$	$\begin{gathered} \text { Th } \\ \hline 90 \end{gathered}$	Pa_{91}	$\underset{92}{\cup}$	$\underset{93}{\mathrm{~Np}}$	P_{94}	Am_{95}	$\underset{\infty}{\mathrm{Cm}}$	Bk	$\underset{98}{\text { Cf }}$	Es	$\underset{100}{{ }_{100}}$	$\underset{101}{\mathrm{Md}}$	No 102	${ }_{103}^{\mathrm{Lr}}$			

B²FH paper: Review of Modern Physics 1957, M. Burbridge, G. Burbridge, W. Fowler, F. Hoyle 1983 Nobel Prize : W. Fowler

Element abundances in solar system

data from : http://iopscience.iop.org/article/10.1086/375492/pdf

Mimicking the energy production in stars?

The fusion reaction considered in the controlled production of thermonuclear energy is the following: $d+t \rightarrow \alpha(3,5 \mathrm{MeV})+n(14 \mathrm{MeV})$

I g of $d+t$ fuel produces
the energy equivalent
to 8 tonnes of oil!

Tritium extraction

Charged alpha particles stop in the plasma and Keep it hot. The neutrons come out of the plasma, deposit their energy in the blanket they heat. They are then captured by ${ }^{6} \mathrm{Li}$ nuclei to regenerate tritium.

$$
n+{ }^{6} L i \rightarrow \alpha+t
$$

Heat extraction

Heat is extracted from the blanket by the exchanger. Heat can then be converted into electricity in a turbine.

D-T TOKAMAK fusion reactor protoypes

	TORE SUPRA (Cadarache)	JET (Culham, Angleterre)	ITER (Cadarache)
Puissance de fusion	-	16 MW	500 MW
Volume du plasma	$30 \mathrm{~m}^{3}$	$100 \mathrm{~m}^{3}$	$840 \mathrm{~m}^{3}$
Grand rayon du plasma	$2,40 \mathrm{~m}$	3 m	$6,20 \mathrm{~m}$
Petit rayon du plasma	$0,72 \mathrm{~m}$	$1,25 \mathrm{~m}$	2 m
Hauteur du plasma	$1,4 \mathrm{~m}$	$4,2 \mathrm{~m}$	$6,80 \mathrm{~m}$
Duree de maintien des plasmas	6 minutes	≤ 1 minute	De 6 minutes à 16 minutes

ITER

Tokamak, toroïdal chamber with magnetic coils

Invented by
Igor Tamm
Andreï Sakharov
Oleg Lavrentiev
in the 50^{\prime} s

ITER: construction in progress in 2019 in Cadarache

First ITER plasma in 2025
Nominal power in 2035.

Next step : industrial prototype
DEMO, $1200 \mathrm{MW}_{\text {th }}, 500 \mathrm{MW}_{e}$

Bosons and fermions

Bosons: spin is integer multiple of \hbar (Bose-Einstein condensation, superconductivity, superfluidity, laser, interaction messengers)
Fermions: spin is half-integer multiple of \hbar (atomic shells, atomic forces, conductivity)

Cold atom magnetic trap

Ioffe-Pritchard magnetic trap

Setup to prepare ultracold Ne atoms : Magneto-Optical Trap

W. van Drunen, N. Herschach, G. Birkl, W. Ertmer: TU Darmstadt

Evaporative cooling

Atoms
 inside the trap

Bose-Einstein condensation (BEC)

Intially observed with 2000 remaining atoms, but more recent experiments achieve more than a million atoms
low density gas of Rubidium atoms (bosons) at very cold T

At 200 nK Rb atoms start condensing into BEC

At $50 \mathrm{nK}, \mathrm{BEC}$ is almost pure

2001 Nobel Prize
E. Cornel
C. Wieman
W. Ketterle

Exercise

- Show that the average de Broglie wavelength of atoms, is given by :

$$
\lambda=\frac{\hbar c}{\sqrt{3 \mathrm{mc}^{2} \mathrm{kT}}}
$$

where k is Boltzmann's constant.
Hint : At thermal equilibrium, the average kinetic energy of atoms is $E=3 / 2 k T$

- Knowing that $\hbar c=197 \mathrm{MeV} \mathrm{fm}$ and $\mathrm{mc}^{2} \approx \mathrm{~A} \times 931 \mathrm{MeV}$, compute the de Broglie wavelength of 200 nK and $50 \mathrm{nK}{ }^{87} \mathrm{Rb}$ atoms.
- Conclude

Solution of exercise

$$
\begin{array}{lr}
\mathrm{p}=\mathrm{mv}=\frac{\hbar}{\lambda} & \mathrm{E}=\frac{1}{2} \mathrm{~m} \mathrm{v}^{2}=\frac{3}{2} \mathrm{kT} \\
\mathrm{\lambda}=\frac{\hbar}{\mathrm{mv}}=\frac{\hbar \mathrm{c}}{\sqrt{3 \mathrm{mc}^{2} \mathrm{kT}}} & \begin{array}{l}
\hbar \mathrm{c}=197 \mathrm{MeV} \mathrm{fm}^{-10} \\
\mathrm{k}
\end{array}=0.8610^{-10} \mathrm{MeV} \mathrm{~K}^{-1}
\end{array}
$$

200 nK and $50 \mathrm{nK}{ }^{87} \mathrm{Rb}$ atoms

$$
\lambda(200 \mathrm{nK})=96 \mathrm{~nm}
$$

$$
\lambda(50 \mathrm{nK})=192 \mathrm{~nm}
$$

De Broglie wavelength much bigger than atom size

Bose-Einstein condensation

Rb bosons

BEC observed for bosons only
© Massimo Inguscio, University of Florence

Interference of two BEC

Interference pattern of two sodium BEC when made to overlap.
M.R. Andrews et al., Science 275, 637-641 (1997)

Bragg diffraction of cold atoms.

Cold atoms localized in an optical lattice and set free.
Atom waves from regular lattice form a Bragg diffraction pattern.

© R. Godum, V. Boyer, D. Cassettari, G. Smirne, Oxford

Young fringes of de Broglie atom waves

© F. Shimizu, University of Tokyo
Cold atom cloud above a plate pierced with two slits. After behing released, fringes are observed on detection plane localized on the other side of plate.

Optical tweezers

Schematic Representation

Polarized-He3 MRI lung imaging

Healthy patient

patient showing ventilation
obstructions
Polarized-He3 obtained by optical pumping
M. Leduc and P. Jean Nacher

Superconductivity

positively charged lattice ions
J. Bardeen
L. Cooper
J.R. Schrieffer

1972 Physics
Nobel Prize

Cooper pair mowing through lattice

Electron Cooper pairs form bosons and may then condensate in one coherent macroscopic state.

Type I and II superconductors

Type II may be used in technological applications

Vortices in Type-II superconductors

Superconductivity applications

MRI magnets up to II T

LHC dipole magnets - 8.3 T

Research on superconducting materials

The theory of high-temperature superconductors is still an outstanding challenge !

Superfluidity of ${ }^{4} \mathrm{He}$

Phase diagram of liquid "He

Viscosity drops to zero and heat capacity raises.

Lev Landau, 1962 Physics Nobel prize A. Leggett, V. Ginzburg, A. Abrikossov 2003 Physics Nobel prize

Superfluidity of "He

Fountain effect produced by heating. LHe flows through

Dripping off a cup after being lifted above the container surface level - Superfluid He flows through adsorbed surface film.

Superfluidity of ${ }^{3} \mathrm{He}$

D. Lee
R. Richardson
D. Osheroff 1996 Physics Nobel Prize
${ }^{3}$ He is a fermion but at low enough T, ${ }^{3}$ He atoms pair (like Cooper pairs) but in $S=1$ pairs. As a consequence three phases (A, A, B) are observed with different physical properties.

Superconductivity and superfluidity in neutron stars

Superfluids and superconductors are also foreseen in astrophysical objects under extreme conditions!

Application of superfluidity

Cooling of LHC superconducting magnets

120 tonnes of superfluid ${ }^{4} \mathrm{He}$ at 1.9 K to cool LHC superconducting magnets.

Quantum phase transitions in BEC

Atoms from a BEC in magneto optical trap are transferred to an optical lattice created by standing waves of laser light.

Weak potential strength

High potential strength

Quantum phase transitions in BEC

© M. Greiner et al , Munich

atoms undergo repulsive interaction

Superfluid	Insulator	Superfluid		
coherent state				
at low potential				
strength				at high potential
:---				
strength	\quad	coherent state		
:---				
restored				

Quantum phase transitions in BEC

Momentum distribution for different potential depths of a 3D lattice:

Quantum phase transitions in BEC

For further reading

- The new physics for the twenty-first century : edited by Gordon Fraser, Cambridge University Press

