Physics in the XXI ${ }^{\text {st }}$ century

Johann Collot

Laboratoire de Physique Subatomique et de Cosmologie de Grenoble

Université Grenoble Alpes, CNRS/IN2P3

GRENOBLE | MODANE

Grenoble Alpes

Elementary particles and their interactions

"Furthermore, among bodies some are compounds, and others those of which compounds are formed.
And these latter are indivisible and unalterable (if, that is, all things are not to be destroyed into the non-existent, but something permanent is to remain behind at the dissolution of compounds) : they are completely solid in nature, and can by no means be dissolved in any part. So it must needs be that the first beginnings are indivisible corporeal existences."

Epicurus' letter to Herodotus (a student of Epicurus)

Quantum nature of actions/interactions at a distance

Newton, in a letter to Dr. Bentley: «That gravity should be innate, inherent, and essential to matter, so that one body may act upon another at a distance through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity that I believe no man who has in philosophical matters a competent faculty of thinking can ever fall into it.»

Exchange of bosons induces interactions

Quantum nature of interactions

A free electron constantly and randomly emits photons which get reabsorbed a moment later.

photon

electron
proton

The same is true for a proton

Interaction takes place when the photon randomly emitted by one is randomly caught by the other.

Quantum nature of interaction

electron

$$
\Delta \mathrm{r}
$$

proton

Force: $\mathrm{F} \propto \frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}$ but: $\Delta \mathrm{p} \Delta \mathrm{r}=\hbar$ and $\Delta \mathrm{t}=\frac{\Delta \mathrm{r}}{\mathrm{c}}$
Then: $\mathrm{F} \propto \frac{\hbar \mathrm{c}}{\Delta \mathrm{r}^{2}} \quad 1 / \mathrm{r}^{2}$ behavior of the exchange force !

Quantum nature of interactions

We have experimental confirmation that nature proceeds this way for three of the fondamental interactions.

Gravitation has no proven microscopic theory yet! General Relativity is a geometric theory of the macroscopic spacetime.

Interactions unification ? Historical approach.

Interaction strengths

Gravitation

Gravitational potential energy of 2 protons separated by a distance $r=1 \mathrm{fm}\left(10^{-15} \mathrm{~m}\right)$

$$
\mathrm{V}_{\mathrm{G}}=\mathrm{G}_{\mathrm{N}} \frac{\mathrm{~m}_{\mathrm{p}}^{2}}{\mathrm{r}}=1.310^{-30} \mathrm{GeV} \quad \begin{aligned}
& \mathrm{G}_{\mathrm{N}}=6,67310^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \\
& 1 \mathrm{GeV}=1.610^{-10} \mathrm{~J}
\end{aligned}
$$

To be compared to binding energy of atoms of the order of I eV to 100 keV
Hence, gravitation does not play any role in today's particle physics laboratories
Gravitation becomes dominant in particle physics when

$$
\begin{equation*}
\mathrm{M} \rightarrow \mathrm{M}_{\text {Planck }}=\frac{1}{\sqrt{\left(\mathrm{G}_{\mathrm{N}}\right)}}=1.210^{19} \mathrm{GeV} \quad \text { or } \quad \mathrm{r} \rightarrow \mathrm{~L}_{\text {Planck }}=\frac{\hbar \mathrm{c}}{\mathrm{M}_{\text {Planck }}}=1.610^{-33} \mathrm{~cm} \tag{or}
\end{equation*}
$$

Interaction strengths

Electromagnetism
Electrostatic potential energy of I proton and I electron separated by a distance r

$$
\mathrm{V}_{\mathrm{EM}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}}=\frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0} \hbar \mathrm{c}} \frac{\hbar \mathrm{c}}{\mathrm{r}}=\alpha \frac{\hbar \mathrm{c}}{\mathrm{r}} \quad \begin{gathered}
\hbar \mathrm{c}=197 \mathrm{MeV} \mathrm{fm} \\
\alpha=1 / 137
\end{gathered}
$$

Fine structure constant

$$
V_{E M}=14 \mathrm{eV} \text { for } r=1 \AA
$$

Main interaction between nuclei and atomic shelves

Interaction strengths

Strong interaction
Electrostatic potential energy of 2 protons separated by a distance $r=1 \mathrm{fm}$, typical nuclear dimension

$$
\begin{aligned}
& \quad V_{\mathrm{EM}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}}=\frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0} \hbar \mathrm{c}} \frac{\hbar \mathrm{c}}{\mathrm{r}}=\alpha \frac{\hbar \mathrm{c}}{\mathrm{r}} \\
& \mathrm{~V}_{\mathrm{EM}}=1,4 \mathrm{MeV} \text { for } \mathrm{r}=1 \mathrm{fm}
\end{aligned}
$$

$$
\begin{aligned}
& \hbar \mathrm{c}=197 \mathrm{MeV} \mathrm{fm} \\
& \alpha=1 / 137
\end{aligned}
$$

Fine structure constant

This is a repulsive interaction! So nuclei could not be stable if there were no other interactions! Moreover neutrons (neutral particles) are bound with protons in nuclei.

Strong interaction binds neutrons and protons in nuclei with a typical strength wich is 100 times that of EM interaction. It is not sensitive to electric charge.

Interaction strengths

Weak interaction : (responsible for beta decay of free neutrons or unstable nuclei but also thermonuclear energy production in the Sun)
Has approximately the same coupling constant a as EM interactions but proceed
by exchanging massive bosons (W and Z). So effective strength is quite reduced.

$$
\alpha_{\mathrm{w}}=\frac{\alpha}{\mathrm{M}_{\mathrm{w}}^{2}} \simeq 10^{-6} \mathrm{GeV}^{-2} \quad \alpha=1 / 137 \quad \mathrm{M}_{\mathrm{w}} \simeq 80 \mathrm{GeV}
$$

Virtual massive boson exchange

$$
\Delta \mathrm{E} \quad \Delta \mathrm{t}=\hbar \mathrm{c}=\Delta \mathrm{E} \quad \Delta \mathrm{r} \Rightarrow \Delta \mathrm{r}=\frac{\hbar \mathrm{c}}{\Delta \mathrm{E}} \Rightarrow \Delta \mathrm{r}_{\mathrm{w}}=\frac{\hbar \mathrm{c}}{\mathrm{M}_{\mathrm{W}}}=210^{-3} \mathrm{fm}
$$

Very small interaction range at low energy

$$
\mathrm{V}_{\mathrm{W}}=\alpha \frac{\hbar \mathrm{c}}{\mathrm{r}} \mathrm{e}^{-\mathrm{M}_{\mathrm{w}} \mathrm{r} / \hbar \mathrm{c}} \text { becomes as big as } \mathrm{EM} \text { if : } \mathrm{r}<210^{-3} \mathrm{fm} \text { or } \mathrm{E}>80 \mathrm{GeV}
$$

Yukawa potential energy with virtual boson exchange.

Proceeds at a scale which is much smaller than size of a neutron or a proton! Hence there must exist a neutron/proton subscale : quarks

Interaction strengths and unification ?

As of today in particle physics labs, relative interaction strengths are

Coupling Constants of Fundamental Forces

$10^{-40} / 10^{-7} / 10^{-2} / 1$
for
gravitation / weak / EM / strong

Because of "quantum vacuum polarization" effects, interaction
Impossible experiment strengths evolve as function of energy

Elementary particles
Z^{0} boson $Q=0$ isospin $=0$ neutrino $Q=0$
isospin $=1 / 2$ and their interactions
W^{+}boson, $\mathrm{Q}=|e|$, isospin $=1$
electron
$Q=-|e|$, isospin $=-1 / 2$
photon
W^{-}boson
$Q=0$
$Q=-|e|$
isospin $=-1$
W^{+}boson, neutrino \rightarrow electron
Z^{0} boson, neutrino \rightarrow neutrino, electron \rightarrow electronW- boson, electron \rightarrow neutrinophoton, electron -> electron weak interaction electromagnetic Interaction electricity, magnetism and optics beta radioactivity, 4p->He transformation in the Sun...

Elementary particles
 and their interactions
W^{+}boson, $Q=|e|$, isospin $=1$
d (down) quark, $q=-1 / 3|e|$, isospin $=-1 / 2$photon
W- boson $Q=-|e|$
$Q=0$ isospin $=-1$W+ boson, u quark \rightarrow d quarkZ^{0} boson , u quark \rightarrow u quark ; d quark \rightarrow d quarkW- boson, d quark \rightarrow u quark
Weak interactionphoton, quark u \rightarrow quark u; quark d \rightarrow quark d
Electromagnetic Interaction

Quarks and Quantum Colors

Three Generations of Matter (Fermions)

All these fundamental particles have their antiparticles (same mass and same spin, but opposite electrical charge and opposite quantum numbers) that may be identical if the particle is neutral : e.g. photon, Z...

Fundamental means, that they have no known substructure

To learn more on elementary particle properties : http://pdg.lbl.gov/

Hadrons

These are all the bound states consisting of quarks and anti-quarks. Hadrons are not colored: they are color singlets: in other words, they are white.

One can show that only the systems containing a quark and an antiquark ($\mathrm{q} \overline{\mathrm{q}}$) or three quarks (qqq) respect this principle.

This situation is analogous to what is obtained in the additive color synthesis of light, where white is obtained by adding the three primary colors (RBG), or by mixing one of the three primary colors with its complementary color (G and M, R and C, B and Y).
$\mathrm{q} \overline{\mathrm{q}}$ systems are called mesons, while
qqq systems are called baryons.

Hadrons made of u, d, s and c quarks

Spin 0 scalar mesons

Spin 1 vector mesons

(b)

Mesons

Mass

Initially all elementary particles are massless, but in physics, mass is found almost everywhere. $P=m g \quad$ gravitational mass Galileo
$F=m a \quad$ inertial mass Newton
$E=\gamma m c^{2}$ mass-energy equivalence Einstein
All these masses are identical.
Generating a particle proper energy automatically creates an inert and gravitational mass.

Masses of elementary particles

If our quantum universe is symmetric under $U(1)_{Y} \times S U(2)_{L} \times S U(3)_{C}$ local transformations, then all elementary particles must be massless (and a neutrino is really a neutral electron).

We believe this might have been the case at the very beginning of the Big Bang (BB)

But this is not true anymore : all matter particles \& weak interaction bosons are massive. Only photons and gluons remain massless.

Masses of elementary particles

Solution: masses of elementary particles might result from weak interactions between new spin 0 (scalar) fields (called Higgs fields) and elementary particles.
At the very beginning, all Higgs fields had zero mean values in vacuum and then no constant mass term was generated.

After a phase transition that took place $\sim 0.1 \mathrm{~ns}$ after BB , due to self interaction, the neutral components of the Higgs fields developed a constant non-zero mean value in vacuum, and provoked the appearance of mass terms. A bit similar to Meissner effect in superconductors and Debye effect in electrolytes.

Masses of elementary particles

This mechanism was put forward in 1963 by Englert, Brout and Higgs
What we commonly call the Higgs boson is the quantum excitation of the neutral Higgs field (like the photon is the quantum excitation of the EM field). It's a massive spinless \& neutral boson.

Because of the nature of the mass generation of elementary particles, the direct coupling of the Higgs boson to a massive particle increases with its mass m.
Indirectly, the Higgs boson also couples to photons and gluons through quantum loops.

Masses of elementary particles in cartoon

Everywhere in space, one finds a new field: the Higgs field

The Higgs field gets polarized around the particle, generating a mass term.

A free and massless particle gets immersed

The Higgs boson

The quantum perturbation propagates and almost instantaneously decays into elementary particles.

The Higgs field gets excited

Englert, Brout \& Higgs mechanism

The explicit parameter m was eradicated from the fundamental equations of physics ; dixit Frank Wilczek (Nobel prize 2004)

Mass is an acquired property of particles
Shortly before the phase transition, our Quantum Universe could have been in a false vacuum state. Its pressure would then have been negative and it might have been subjected to an exponential space expansion : this property opened the way to inflationary cosmology even though the inflation of our Universe took place much earlier than this.

Higgs boson: a very simple particle

- No electrical charge
- No spin (proper-rotation)
- Almost simpler than a photon
- But an unpredicted mass that turned out to be equal to that of a cesium atom
- Then was very difficult to produce and observe because highly unstable
- And a rôle which is a bit obscure

Proton is sort of microscopic bubbling of quarks and gluons 5 orders of magnitude smaller than the size of an atom.

The proton structure is more

Simulation
complex than that of a star

Feynman diagrams : the interface language between theorists and experimentalists

Conservation of

- total energy (including mass energy) and total momentum - total angular momentum
- electric charge
- quantum numbers

Interaction by particle exchange

Quantum field theory provides the rules to compute the probabilities (cross-sections ...)

Probability of interaction

$$
P=A \int\left|\left(e^{-}, e^{-}\right) \gamma\left(e^{-}, e^{-}\right)\right|^{2} d \Phi
$$

Allowed configurations

time arrow

Neutrino-electron scattering

\oplus

Both happen at the same time and are indistinguishable. Quantum interference like double slit experiment.

Solar neutrinos : smoking gun of Sun's energy production

 processes

2002 : Raymond Davis - Masatoshi Koshiba
2015 : Takaaki Kajita - Arthur McDonald

W boson production on P p collider

CDF experiment just released new W mass measurement

Fig. 5. Comparison of this CDF II measurement and past M_{W} measurements with the SM expectation. The latter includes the published estimates of the uncertainty (4 MeV) due to missing higher-order quantum corrections, as well as the uncertainty (4 MeV) from other global measurements used as input to the calculation, such as m_{t}, c, speed of light in a vacuum.

April 2022

Glvon exchange

Basic process that glues all hadrons

Proton

The simplest stable nucleus (hydrogen)

${ }^{4}$ He nucleus

Strong interaction's the pillar of bound matter. Without nuclei no atoms !

Energy materialization

A materialization of that sort (involving other processes) took place at the very beginning of the Universe ($t \ll 0.1 \mathrm{~ns}!)$

Electron-positron annihilation

Underlying process of Positron Emission Tomography : imaging of metabolic activity

Positron Emission Tomography

Les différentes étapes

d'un examen TEP

Une heure avant I'examen, le patient recoit une injection d'un produit radiopharmaceutique, e FDG (fluoro-désoxyglucose) marqué au fluor 18 (isotope radioactif de l'oxygène 18 produit dans un cyclotron) Un examen corps entier (cou thorax et abdomen) dure une petite heure. Le TEP-scanner ameliore la qualite des images cliniques et permet de les superposer avec des images anatomiques pour mieux localise les tumeurs.

Intégré dans FDG et injecté au patient

[$\left.{ }^{18} \mathrm{~F}\right]$ - fluoro-désoxyglucose

Production de fluor 18

+ Scanner

Positron Emission Tomography

Pion decay

Cosmic rays

Pierre Auger Observatory in Argentina

Muon decay

$$
m_{\mu}>m_{e^{-}}
$$

Neutron decay

Beta decay takes place at the quark level!

Tau decay into 3 pions

Exercises

- Write a Feynman diagram for:
- quark-antiquark pair production at a electron-positron collider
- W boson production at a proton-proton collider
- photon-photon scattering
- proton-neutron long-range interaction by exchange of a pion
- muon neutrino elastic scattering on an electron
- anti electron neutrino elastic scattering on an electron

Solutions : quark-antiquark production at $e^{+} e^{-}$collider

$$
E_{c m}>2 m_{q} c^{2}
$$

Solutions : gluon discovery at DESY (Hamburg)

Gluon discovered in 1979 in DESY by TASSO collaboration on PETRA collider

Solutions: W production at pp collider

Solutions : photon-photon scattering

Solutions : neutron-proton interaction by pion exchange

Solutions : muon-neutrino elastic scattering on an electron

Discovery of weak neutral current in 1973 by Gargamel collaboration. First proof of electroweak unification.

Solutions : electron-antineutrino elastic scattering on an electron

Particle accelerators

A mass accelerates while falling in a gravity field

Accelerators

A satellite is Kept on its orbit by the gravitionnal force exerted by Earth

To keep a 7 TeV proton on a 8 km diameter orbit, a 8.4 T magnetic field is needed.

A charged particle is kept on a synchrotron circular orbit by a magnetic force force exerted by electro-magnets

LHC comprises 123215 m -long superconducting dipole magnets cooled to 1.8 K .

Large Hadron Collider

ATLAS

Collaboration of 3000 physicists (1000 PhD students) working in 174 universities and laboratories of 38 countries

ATLAS

Detection principles on particle colliders

Production of a Higgs boson

Higgs boson decay

Higgs boson

Higgs boson decaying into two photons

The discovery

ATLAS

CMS

The same particle is observed with more than 5 sigma significance in two different detectors operated by two independent collaborations..

$$
2013 \text { Nobel prize : F. Englert and P. Higgs }
$$

Higgs boson mass

High mass resolution channels

$$
h \rightarrow z z^{*} \rightarrow 41 ; h \rightarrow \gamma \gamma
$$

$$
m_{H} c^{2}=125.09 \pm 0.24 \mathrm{GeV} \quad \text { two per mille precision already ! }
$$

Is it really the Higgs boson?

It really seems like it.
coupling-strengths to other elementary particles agree with SM expectations.

Production of Higgs boson pairs

But interference of these diagrams is destructive. More than 3 orders of magnitude less probable than single h production Main objective of High-Luminosity LHC

Higgs boson self-coupling related to phase transition of spacetime, 0.1 ns after Big Bang

Universe history and its content

The evolution and the structure of Universe depend upon its content !

From observations of the evolution and the structure of our Universe, we can infer that as of today our ordinary matter (us, planets, stars, galaxies ...) account for only 4% of Universe. The essential eludes us Will LHC be capable of producing a bit of Dark matter ?

Supersymmetric particles

Each existing elementary particle would have a supersymmetric partner of much heavier mass, hence never produced till now by accelerators
If one of these particles were neutral, stable and weakly interacting with matter, it could then constitute the missing Dark Matter (25% of Universe density)

High-Luminosity LHC

hL-LHC CIVIL ENGINEERING:
DEFIIITION
excavation
BUILDINGS

Particle physics long term issues

- "The masses of the quark \& leptons in this theory have so far had to be derived from experiment, rather than induced from some fundamental principle", dixit Steven Weinberg
- Grand unification of interactions (Strong + Electroweak) ?
- Preponderance of matter over antimatter in Universe
- What is dark matter made of ?
- Quantum gravity ?

International Linear Collider : ILC

Future Circular Collider: FCC

FCC-ee : $e^{+} e^{-}$collider - up to 350 GeV starts in 2030 ?

FCC-pp : pp collider - up to 100 TeV starts in 2060 ?

Compact Linear International collider : CLIC

$e^{+} e^{-}$collider 2040 ?

Chinese Electron Positron Collider: CEPC

$e^{+} e^{-}$collider - 240 GeV

Discrete symmetries

- C : charge conjugation : reverse all particle «charges » : electric, strong color, weak isospin
- P : parity : space inversion : $\overrightarrow{\mathrm{r}} \rightarrow-\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{p}} \rightarrow-\overrightarrow{\mathrm{p}}$, but $\overrightarrow{\mathrm{L}} \rightarrow \overrightarrow{\mathrm{L}}$ and $\overrightarrow{\mathrm{S}} \rightarrow \overrightarrow{\mathrm{S}}, \overrightarrow{\mathrm{E}} \rightarrow-\overrightarrow{\mathrm{E}}, \overrightarrow{\mathrm{B}} \rightarrow \overrightarrow{\mathrm{B}}$
- T : time inversion : reverse time flow : $\overrightarrow{\mathrm{r}} \rightarrow \overrightarrow{\mathrm{r}}, \mathrm{t} \rightarrow-\mathrm{t}, \overrightarrow{\mathrm{p}} \rightarrow-\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{L}} \rightarrow-\overrightarrow{\mathrm{L}}$ and $\overrightarrow{\mathrm{S}} \rightarrow-\overrightarrow{\mathrm{S}}$
- Electromagnetic and strong particle processes are C, P, T invariant

CPT theorem

- Based on the Lorentz invariance principle (special relativity) and the spinstatistics theorem (integer-spin particles (bosons) may occupy same state, while half-integer-spin particles (fermions) all have distinct states), one may show that all particles are CPT invariant.
- This is one the most fundamental theorems of (particle) physics.
- As a consequence particles and their antiparticles have same mass, spin, life-time and opposite charges.

Parity violation by weak interaction

- In the 50s it was put forward by T.D. Lee and C.N. Yang that weak interaction (maximally) violates parity. It was soon after confirmed experimentally by C.S. Wu

1957 Nobel prize

Parity violation by weak interaction

C.S. Wu's experiment 1957

Parity

$S_{z}=4$
${ }^{60} \mathrm{Ni}$

$S_{z}=4$

$\vec{B} \uparrow$
$+$

$+$

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}}
$$

As weak interaction only couples to left-handed neutrinos and right-handed antineutrinos

Charge conjugaison and P violation of weak interaction

C and P are violated but $C P$ seems conserved

CP violation of weak interaction

In 1964, it was found by J. Cronin and V. Fitch in rare decays of neutral kaons ($s \overline{\mathrm{~d}}$ and $\bar{s} \mathrm{~d}$ mesons) that CP is violated with a small amplitude : -2.310^{-3}

1980 Nobel prize

B meson production on $e^{+} e^{-}$collider
comes

SuperKEKB and Belle II in Tsukuba (Japan)

CP violation in B meson decays (an example)

$$
\mathrm{V}_{\mathrm{ub}} \neq \mathrm{V}_{\mathrm{ub}}^{*} \quad \text { induces decay probabilities difference }
$$

Experimentally

$$
\frac{\mathrm{P}\left(\mathrm{~B}^{-} \rightarrow \mathrm{K}^{-} \overline{\mathrm{D}}_{0}\right)-\mathrm{P}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{D}_{0}\right)}{\mathrm{P}\left(\mathrm{~B}^{-} \rightarrow \mathrm{K}^{-} \overline{\mathrm{D}}_{0}\right)+\mathrm{P}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{D}_{0}\right)}=0.139 \pm 0.009
$$

CKM quark mixing Matrix

Cabibbo, Kobayashi and MasKawa matrix

If 3×3 (3 particle generations), a complex phase is possible ! M. Kobayashi and T. Maskawa 2008 Nobel prize

The strong CP problem

It's related to why the neutron electric dipole moment (nEDM) is so small. Classically

$$
\overrightarrow{\mathrm{d}}_{\mathrm{n}}=\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} \overrightarrow{\mathrm{r}}_{\mathrm{i}}
$$

$$
\left|\mathrm{d}_{\mathrm{n}}\right| \approx 10^{-13} \sqrt{1-\cos \theta} \mathrm{e} . \mathrm{cm}
$$

θ A:-1/3e | A priori: $0 \leqslant \theta \leqslant 2 \pi$ |
| :--- |
| But experimentally : |
| $\left\|d_{n}\right\| \leqslant 1.8 \cdot 10^{-26} \mathrm{e} . \mathrm{cm}$ |
| that implies : $\theta \leqslant 2.5 \cdot 10^{-13}$ |

[^0]

The strong CP problem : nEDM

nEDM is necessarily collinear to neutron spin!

The QCD CP problem

QCD features possible $C P$ violating terms that induce measurable contributions to bound states like the neutron. If introduced in theory, the QCD n EDM value would then be

$$
\left|\mathrm{d}_{\mathrm{n}}\right| \approx 3.610^{-16} \bar{\theta} \text { e.cm } \quad \text { where } \bar{\theta} \text { is an unconstrained angle : } 0 \leqslant \bar{\theta} \leqslant 2 \pi
$$

But according to experiment: $\bar{\theta} \leqslant 210^{-10}$ This is the QCD CP problem.
https://arxiv.org/pdf/2105.01406.pdf
The most popular solution to explain why nature favors this small value is the R. Peccei and H. Quinn mechanism. A new $U(I)$ global axial symmetry is introduced. After breaking of this $P Q$ symmetry in the very early universe, a massless Goldstone boson appears that couples to gluons. Quark-Gluon confinement that arises later, makes it that the axion value in vacuum exactly compensates the $\bar{\theta}$ contribution. In passing, the axion acquires an unconstrained low mass.
Axion is then a massive neutral negative-parity spin-0 particle.

To be noted as well, is the SM Higgs contribution to nEDM that adds to the QCD one and cancels out (to the 10^{-10} level) with no apparent connection. This is the SM nEDM problem

Search for axion

GRAHAL: The GRenoble Axion HALoscope project

https://arxiv.org/pdf/2110.14406.pdf

Conversion of galactic DM halo axions into photons in RF resonant cavities immersed in very high B field. Maximal B field : 43 T!
GRAHAL
expected
sensitivity

N组

Matter dominated universe ?

- All experimental observations seem to confirm that we live in a universe exclusively dominated by matter : no trace of antimatter
- In 1967, A. Sakharov found 3 conditions to achieve this
A. Sakharov 1975 Nobel peace prize
- Baryon number must be violated (more quarks than antiquarks produced)
- C and CP must be violated
- These processes should take place out of thermal equilibrium
- There's no proven complete theory yet that implement all of these and find the observed matter-antimatter asymmetry !

PNMS neutrino mixing Matrix

Pontecorvo, Nakagawa, Maki, Sakata matrix

If 3×3 (3 particle generations), an imaginary phase is possible!

This may lead to new CP violation processes.

Neutrino oscillations

Because of mixing and mass differences neutrinos may oscillate and change flavor

Évolution libre

Because of potential CP violation

$$
\mathrm{P}\left(v_{\mu} \Leftrightarrow v_{\mathrm{e}}\right) \neq \mathrm{P}\left(\bar{v}_{\mu} \Leftrightarrow \bar{v}_{\mathrm{e}}\right)
$$

Reactor neutrino oscillations

Electronic antineutrinos produced by a reactor progressively oscillate to other neutrino flavors as time (distance) evolves

DUNE experiment

$-\mathcal{O}(1 \mathrm{~m})-\mathcal{O}(10 \mathrm{~m}) \longrightarrow \mathcal{O}(100 \mathrm{~m})-\mathcal{O}(5 \mathrm{~m})-$ at $\frac{L}{E} \ll \frac{1}{\Delta m^{2}}-$ at $\frac{L}{E}=\frac{1}{\Delta m^{2}} \rightarrow$

ν_{μ} and $\bar{\nu}_{\mu}$ beams

Search for CP violation in neutrino oscillations

Hyper-Kamiokande experiment

Hyper-Kamiokande

Cosmology and Universe

A century ago, we had just gone out of our galaxy by observational means !

and

The contemporary model of atom was just emerging.

Cosmological principle

Milky Way size : 0.2 M ly

Cosmological principle Spatial distribution of

- matter in the early

Universe was homogeneous 아 and isotropic

Redshift due to expansion

$$
\frac{\lambda}{\lambda_{0}}=1+\mathrm{z}
$$

Two degree Field survey published by Auglo-Australian Observatory in 2003

Simulation of large-scale structure formation

going backward in time

today

Simulation of the formation of a group of galaxies

Universe expansion

Obtained by Hubble Space Telescope
HST Key Froject. ZQu日1 Distance (Mpe)
$d=$ physical distance
$X=$ comoving distance
$a(t)=$ scaling expansion factor

$$
\mathrm{d}=\mathrm{a}(\mathrm{t}) * \mathrm{X}
$$

If no peculiar motion: $\dot{\mathrm{X}}=0$

$$
\mathrm{v}(\mathrm{~d})=\dot{\mathrm{d}}=\dot{\mathrm{a}}(\mathrm{t}) * \mathrm{X}=\frac{\dot{\mathrm{a}}(\mathrm{t})}{\mathrm{a}(\mathrm{t})} * \mathrm{a}(\mathrm{t}) * \mathrm{X}=\mathrm{H}(\mathrm{t}) * \mathrm{~d}
$$

$H(t)$ is the Hubble constant $=$

$$
h(t) * 100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

There's still a relatively strong discrepancy in the measurements of Hubble's constant from different methods.

Universe expansion

Age of universe $\approx 1 / H_{0}$

Exercice

With \hbar, c and G (the reduced Planck constant, the velocity of light in vacuum and the Newton Constant) at hand, by considering their physical dimensions, establish

- a time, the Planck time
- a mass-energy (in GeV), the Planck mass ;
- a length, the Planck length.

These characterize the scales at which Quantum Gravity need to be evoked to understand the phenomena.

Solution of exercise

$$
[\hbar]=\mathrm{J} \cdot \mathrm{~s}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} \quad[\mathrm{G}]=\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \quad[\mathrm{c}]=\mathrm{m}^{1} \mathrm{~s}^{-1}
$$

Planck length

$$
\left[\frac{\hbar \mathrm{G}}{\mathrm{c}^{3}}\right]=\mathrm{m}^{2} \quad \mathrm{~L}_{\mathrm{P}}=\sqrt{\frac{\hbar \mathrm{G}}{\mathrm{c}^{3}}}=1.610^{-35} \mathrm{~m}
$$

Planck mass or energy

$$
[\hbar \mathrm{c}]=\mathrm{Jm}=\mathrm{kg} \mathrm{~m}^{3} \mathrm{~s}^{-2} \quad\left[\frac{\hbar \mathrm{c}}{\mathrm{G}}\right]=\mathrm{kg}^{2} \quad \mathrm{M}_{\mathrm{P}}=\sqrt{\frac{\hbar \mathrm{c}}{\mathrm{G}}}=2.1810^{-8} \mathrm{~kg}=1,210^{19} \mathrm{GeV}
$$

Planck time

$$
\mathrm{t}_{\mathrm{p}}=\frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{c}}=\sqrt{\frac{\hbar \mathrm{G}}{\mathrm{c}^{5}}}=5.410^{-44} \mathrm{~s}
$$

Universe epochs

$t<510^{-32} \mathrm{~s}$, inflation - Universe scale grew exponentially , at least 30 orders of magnitude Density and temperature fluctuations

$t>10^{9}$ years, vacuum energy dominance, $a(t) \sim \exp (\alpha . t)$
$t>10,000$ years, matter dominance, $a(t) \sim t^{2 / 3}$
$t<10,000$ years, radiation dominance, $a(t) \sim t^{1 / 2}$

Big Bang Nucleosynthesis (BBN) of light elements

as observed today

Primordial nuclei
H: ~ 75% ${ }^{4} \mathrm{He}:-25 \%$
(in mass fraction)
Took place when T~\| GK
in between
1-3 minutes after t

Big Bang Nucleosynthesis (BBN) of light elements

https://aether.|bl.gov/www/tour/elements/early/abundance.gif

Cosmic microwave background (CMB)

Recombination took place when T ~ 3000 K when $a(t)$ was 1100 smaller than today

COBE (1989-1993)

Pure black body spectrum
$T=2.726 \mathrm{~K}$
First evidence of $C M B$
Tanisotropy
$\Delta T \approx 10 \mu K$

2006 Nobel prize : G. Smoot, J. Mather

Causality \& Horizon

Fundamental scalar field physics

Higgs discovery confirms the existence of a new class of fundamental particles.
More Higgses are predicted by almost all Beyond the Standard Model (BSM) theories Fundamental scalar fields probably played a crucial role at the beginning of Universe

Universe	\square

If Universe compared to a piston. Initially vacuum energy density $\rho=$ cte >0

Universe expansion: $d V>0$
Initially

$$
\rho d V=-p d V>0
$$

$$
\rho=\text { cte }
$$

Initial pressure (\mathbf{p}) negative \Rightarrow exponential expansion $\Rightarrow>$ inflation

Survey of type-la supernovae

2004

Fig. 4 in astro-ph/0402512 [Riess et al., ApJ 607 (2004) 665] Gold Sample (data set) [MLCS2k2 SN la Hubble diagram]

- Diamonds: ground based discoveries
- Filled symbols: HST-discovered SNe la
- Dashed line: best fit for a flat cosmology: $\Omega_{M}=0.29 \Omega_{\Lambda}=0.71$

2011 Nobel prize

S. Perlmutter, B. Schmidt A. Riess

2009 Nobel prize : W. Boyle, G. Smith
$\mu=\mathrm{m}-\mathrm{M} \quad$ distance modulus
m apparent magnitude
Mabsolute magnitude
z : light redshift
$\frac{\lambda}{\lambda_{0}}=1+\mathrm{z}=\frac{\mathrm{a}_{0}}{\mathrm{a}(\mathrm{t})}$
High-z supernovae appear fainter than expected in a slowing down universe. On the contrary, the universe expansion rate is now being accelerated.

Gravitational lensing

Planck CMB mission

Planck 2015
CMB temperature map

angular power analysis of $C M B$ temperature anisotropy

(C) Wayne Hu - U. of Chicago

Fit of baryon density

Planck CMB mission

Planck collaboration arXiv:1502.01589V3

Λ CDM model : Lambda Cold Dark Matter model

Exercise

- Find universe content at decoupling time ($z=1100$) starting from today's content
- Consider that:
$-\rho_{\text {matter }}$ scales as $\frac{1}{a^{3}}$
- $\rho_{\text {radiation scales as }} \frac{1}{a^{4}}$
$-\rho_{\text {neutrinos }}=0.68 \rho_{\text {photons }}$
$-\rho_{\text {radiation }}=\rho_{\text {photons }}=510^{-5} \rho_{0}$
$-\rho_{\text {dark energy }}=$ cte (does not scale)

Solution of exercise

Today

$$
\rho_{\text {dark matter }}=23 \% \quad \rho_{0} \quad \rho_{\text {dark energy }}=72 \% \quad \rho_{0} \quad \rho_{\text {radiation }}=510^{-5} \rho_{0}
$$

$$
\rho_{\text {atoms }}=4.6 \% \rho_{0} \quad \rho_{0}=4.9 \mathrm{GeV} \mathrm{~m}^{-3}=5.2 \text { protons } \mathrm{m}^{-3}
$$

$t_{d}=380000$ years

$$
\frac{\mathrm{a}_{0}}{\mathrm{a}\left(\mathrm{t}_{\mathrm{d}}\right)}=1100=1+\mathrm{z}
$$

$$
\rho\left(t_{d}\right)=\rho_{o}\left(510^{-5} \times 1100^{4} \times 1.68+(0.23+0.046) \times 1100^{3}+0,72\right)=4.910^{8} \rho_{0}
$$

$\rho_{\text {radiation }}\left(\mathrm{t}_{\mathrm{d}}\right)=510^{-5} \mathrm{x} \frac{1100^{4}}{4.910^{8}} \rho(\mathrm{td})=14.9 \% \quad \rho(\mathrm{td}) \quad \rho_{\text {neutrinos }}\left(\mathrm{t}_{\mathrm{d}}\right)=68 \% \quad \rho_{\text {radiation }}(\mathrm{td})=10.1 \% \quad \rho(\mathrm{td})$
$\rho_{\text {dark mater }}\left(\mathrm{t}_{\mathrm{d}}\right)=0.23 \times \frac{1100^{3}}{4.910^{8}} \rho(\mathrm{td})=62.5 \% \rho(\mathrm{td}) \quad \rho_{\text {atoms }}\left(\mathrm{t}_{\mathrm{d}}\right)=\frac{4.6}{23} \times 62.5 \rho(\mathrm{td})=12.5 \% \rho(\mathrm{td}$

Large Synoptic Survey Telescope : Vera-C Rubin Telescope

Cerro Pachon

in Chile

This telescope will produce
the deepest, widest, image of the Universe

- $8.4-\mathrm{m}$ mirror $9.6 \mathrm{deg}^{2}$ field of view
- 3.2 G pixel camera
- Each image the size of 40 full moons
- 37 billion stars and galaxies
- Optimised for transients - SNIa machine !
- 10 year survey of the sky

Dark matter
Dark energy
and many other astrophysical subjects

- 10 million alerts, 1000 pairs of exposures,

15 Terabytes of data .. every night!

Vera-C-Rubin Telescope

Universe content inventory / prospects

- λ CDM model is a formidable success of contemporary physics but comes with puzzling questions for the future
- What is dark matter made of ? 23% of universe density ! WIMPS ? Axions ?
- What is the origin of today's dark energy ? 72% of universe density Quantum fluctuations in vacuum (but totally inconsistent with present measurement)
- What caused inflation at the very early Big Bang stage ?
- Quantum gravity

Exercise

- Using the Heisenberg relation find a rough estimate of the quantum fluctuations to vacuum energy .

Solution of exercise

For a particle of mass m, the quantum vacuum fluctuations are
$\Delta \mathrm{E}=\mathrm{mc}^{2}$
$\Delta \mathrm{E} \Delta \mathrm{t} \approx \hbar$

The volume of the fluctuation is

$$
\mathrm{V} \approx(\mathrm{c} \Delta \mathrm{t})^{3}
$$

Then the density is: $\quad \rho_{\text {vacuum }}=\frac{\mathrm{mc}^{2}}{(\mathrm{c} \Delta \mathrm{t})^{3}}=\frac{\mathrm{m}^{4} \mathrm{c}^{5}}{\hbar^{3}}=\frac{\left(\mathrm{mc}^{2}\right)^{4}}{(\hbar \mathrm{c})^{3}}$

$$
\hbar \mathrm{c}=197 \mathrm{MeV} \mathrm{fm}
$$

For an electron

$$
\rho_{\text {vacuum }}=\frac{(0.511)^{4}}{(197)^{3}} 10^{45} \approx 910^{33} \mathrm{GeV} \mathrm{~m}^{-3}
$$

To be compared to

$$
\rho_{0}=4.9 \mathrm{GeV} \mathrm{~m}^{-3}
$$

What mechanism suppresses quantum fluctuations ? The vacuum problem

Schwarzschild black holes

Neutron stars form as the end product of Supernovae. Most of observed neutron stars cluster around a mass of 1.4 solar mass $\left(M_{\text {sun }}\right)$.
Beyond $4 M_{\text {sun' }}$ neutron stars are not stable.
They collapse under their gravitationnal pressure in black holes whose radius are less than the Schwarzschild radius

$$
R_{s}=2 G M / c^{2}
$$

The Schwarzschild radius of $4 \mathrm{M}_{\text {sun }}$ black hole is around 12 km !

Photons escaping black holes are 100% redshifted !

The Lifecycle of a Star

Two main types of black holes

Stellar mass BH as final products of dead stars

Super massive black holes

Grier et al. (2017)

Almost every galaxy has a super massive BH in its center

Super massive BH were present very early in the Universe

2020 Nobel prize
R. Penrose
R. Genzel
A. Ghez

Event Horizon Telescope

Array of radio telescopes
whose data are combined by software.
Millimetric Interferometry of
next to the Earth radius baseline

Ultra-high resolution : 2510^{-6} arcsec

First shadow of a black hole

Intensity-colorized image (1.3 mm wavelength image)!

Super massive black hole located at the center in M87 (Virgo A), of 6.5 billion $M_{\text {sun }}$

Future : more telescopes and shorter-wavelength observations

Super massive black hole of Milky Way

Revealed on 12 May 2022 by EHT

ALMA at
Atacama in Chile

Super massive black holes formation ?

Extremely Large Telescope on top of Cerro Armazones in the Atacama Desert (Chile) (part of ESO) - Should start operation in 2025.

Athena X-ray satellite
Part of ESa's Cosmic Vision program First light in 2030

Gravitationnal waves

Predicted by Einstein in 1916.
But according to him undetectable since of very very weak amplitude.

Much smaller than the size of an atom when observed on Earth for practical sources.

A periodic rotation of binary massive astrophysical objects generates a periodic deformation of space that propagates.

Gravitational wave effect
Passage dune onde gravitationnelle

Interferometric gravitational wave antenna

VIRGO located in Pisa in Italy.

2 arms of 3 km each.

A typical gravitationnal wave will induce an arm length modulation of $10^{-18} \mathrm{~m}$ (one thousandth of a proton radius !)

GW150914
Coalescence of 2 black holes of 39 and 26 $\mathrm{M}_{\text {sun }}$ took place at 1.3 GLy . The final stage (collapse) lasted 0.2 s and dissipated $3 \mathrm{M}_{\text {sun }}$ in GW.

By far the most energetic event ever observed in Universe and the faintest vibration at the same time.

The LIGO Observatories

LIGO Hanford Observatory (LHO)
H1 . 4 km arms
H 2.2 km arms

IGO Livingston Observatory (LLO)
L1 : 4 km arms

Adapted from "The Eliue Marble:Land Surface, Ocean Color and Sea Ice" at visibleearth.nasa.gov

Mirors produced by LMA in Lyon!

Flatness
0.1 nm !
over 150 mm

Kilonova

Fusion of two neutron stars producing a supernova with r-process Discovered in 2017 : GWI70817 by gravitational wave astronomy. Birth of multi-messenger astronomy!

Multi-messenger
Astronomy

Observations of run I and 2

GW and EM observations

II SOTEI TVIEsses

Credit: LIGO-Virgo / Northwestern U / Frank Elavsky \& Aaron Geller

Laser Interferometer Space Antenna : LISA

Launched by ESA in 2035 !

extended systems

compact systems

2.5 million km arms !

Einstein Telescope

10 km arms

Extrasolar blanets

exoplanet.eu

More than 6000 extrasolar planets discovered

1995 : first confirmed discovery of planet orbiting a main-sequence star (made at OHP in France)

2019 Nobel Prize
M. Mayor, D. Queloz

Radial velocity method

Measuring induced radial velocity changes of host star
(Sun is also rotating around
Solar system center-of-mass point)

Transit method

Direct imaging

VLT-SPHERE

adaptive optics and coronography
new born planet
imaged by SPHERE in 2018

2 giant gas exoplanets orbiting a young star
Imaged in 2020

GAIA

Transit method and precise astrometry
~30000 exoplanets expected

ESA

For further reading :

- The new physics for the twenty-first century : edited by Gordon Fraser, Cambridge University Press
- A unified grand tour of theoretical physics : Ian Lawrie, Adam Hilger
- Modern cosmologie : Scott Dodelson, Academic Press
- Introduction to the theory of the early Universe: Dmitry Gorbunov, Valery Rubakov, World Scientific
- Relativistic cosmology, George Ellis, R. Martens and M. MacCallum, Cambridge University Press

[^0]: https://doi.org/l0.48550/arXiv.1812.02669

