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Foreword
These courses are intended for students with a master degree in physics, who 
never followed any lectures in particle physics. They provide a brief introduction to 
the phenomenological physics program of the LHC.

The objectives of the construction of the standard theory (the Standard Model) are 
briefly outlined in a simplified manner in a first part which is accessible to all. 
Interactions and elementary particles are introduced starting from the point of view 
of their desired symmetries (U (1), SU(2) and SU(3)).

Some needed notions of special relativity, kinematics, collision cross sections and 
quantumfield theory are presented in a very simplified manner.

From the symmetries U (1), SU (2) and SU (3), we then construct the standard 
model of elementary particle interactions in its most compact covariant form.

These courses include a brief analysis of the phenomenological content of the 
electroweak standard model. It continues with a brief presentation  of the treatment 
of masses of elementary particles and concludes with some experimental results 
concerning the weak bosons, the top quark and the Higgs boson.
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It does not take much to make a world !

Music :  7 notes and 2 accidentals (flat and sharp)  
  -positioned on staves according to their frequency
  -bound in chords 

Physical Universe : 12  elementary particles              
                      and 4 interactions
-ordered in multiplets 
-bound states (nuclei, atoms, molecules,                   
           crystals, cosmic bodies ... ) 
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Isotopic Spin : Isospin 

A=2 1
2H I=0

A=1 neutron Q= 0 proton  Q = |e|

Same object (nucleon)  that "spins" around its own axis in an "abstract" space
(isotopic spin space) with two possible isotopic spin projections : ½  and -½
Proton I = ½ , Neutron I = - ½

m
proton 

/ m
neutron 

 = 0.9986 ≈ 1

A=3 1
3H 2

3H
e

m
H1

3 / m H e2
3 ~1I= - ½ I=  ½ 

A=4 1
4H 2

4H
e

m H1
4 : m H e2

4 : m H e2
4 = 1.006 : 1 : 1.005

I= -1 I= 1 
3
4L

iI= 0  
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Elementary particles
            and their interactions

electron
Q= - |e| , isospin = -1/2

neutrino
Q = 0 
 isospin = 1/2

W+  boson,  Q = |e| , isospin = 1

W- boson 
Q = -|e|
isospin = -1 

Z0  boson  Q = 0 
isospin = 0

photon
Q= 0

photon , electron -> electron 
Electromagnetic interaction 

Boson W-  ,  electron -> neutrino 

Boson W+  ,  neutrino -> electron 

Boson Z0  ,  neutrino -> neutrino , electron -> electron 

Weak interaction  
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Elementary particles
            and their interactions

d (down) quark , q= -1/3 |e| , isospin =-1/2 

u (up) quark
Q = 2/3 |e|
 isospin = 1/2

W+ boson, Q = |e| , isospin = 1

W- boson 
Q = -|e|
isospin = -1 

Z0 boson Q = 0 
isospin = 0

photon
Q= 0

photon , u quark -> u quark  ; d quark  -> d quark
Electromagnetic interaction  

W- boson ,  d quark-> u quark 

W+ boson ,  u quark -> d quark 

Z0 boson ,  u quark-> u quark ; d quark -> d quark 

Weak interaction  
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           Colored quarks 

blue d (down) quark  

green d quark 

u (up) quark
Q = 2/3 |e|
 isospin = 1/2

green u quark 

red and anti-green (magenta) gluon

  blue and anti-green (magenta) gluon

3 metaphoric quantum colors :
  red, blue and green 

quarks  are  monochromatic

gluons are bicolored or
white (sum of colors)

red & anti-green (magenta) gluon

red & anti-blue (yellow) gluon

blue & anti-green (magenta) gluon

blue & anti-red (cyan)  gluon

green & anti-blue (yellow) gluon

green & anti-red (cyan) gluon

 white gluon 1
white gluon 2

Strong color Interaction : Quantum Chromo Dynamics (QCD)  
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Elementary constituents

electron

neutrino

up quark

down quark

Q = 0 
 isospin = 1/2

Q= - |e|
isospin = -1/2

l
e
p
t
o
n
s

q= -1/3 |e| 
isospin =-1/2 

Q = 2/3 |e|
isospin = 1/2

q
u
a
r
k
s

muon

neutrino

c (charm)
 quark 

s (strange)
 quark

tau

tau
neutrino

t (top) 
quark 

 b (bottom) 
    quark

electron muon

Strong color interaction : QCD
Electromagnetic interaction

Weak
Interaction

Gluons

Photon

weak bosons
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To learn more on elementary particle properties : http://pdg.lbl.gov/ 
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Hadrons
These are all bound states consisting of quarks and anti-quarks. Hadrons
are not colored : they are color singlets : in other words, they are white.

One can show that only the systems containing a quark and an antiquark  (      )
or three quarks (      ) respect this principle. 

This situation is analogous to what is obtained in the additive color synthesis of light,
where white is obtained by adding the three primary colors (RBG), or by mixing one of the
three primary colors with its complementary color (G and M, R and C, B and Y).

q q
qqq

q q
qqq

     systems are called mesons, while
     systems are called baryons.



11

Hadrons made of u, d, s and c quarks

Spin 0
scalar
mesons 

Spin 1
vector
mesons

Mesons 

spin = 1/2

spin = 3/2

Baryons
If all these quarks had the same mass, and if one neglects their electromagnetic interaction,
all properties (mass, spin ...) of these hadrons in a given multiplet would be identical.
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exercise : convert G
N 
 = 6.6742 10-11 m3 kg-1 s-2 into natural units.

Natural Units 

 ћ = 1 = J . s   , action has no units   then  [t] = [E]-1  = GeV-1

In a relativistic & quantum context, it seems natural to fix the two characteristic constants
c and ћ to 1 in order to simplify the formulas and avoid errors.

c = 1 , velocity has no units  then [d] = [t] = [E]-1 = GeV-1    

[E] en GeV = 1.6 10-10 J

[d] en fm = 10-15 m

ћ = 6.582 10-22 MeV s ћc = 197.3 MeV fm (ћc)2 = 0.389 GeV-2 mb

c = 299792458 m s-1

The velocity of particle is then v/c = β (between -1 and 1 )

k = 8.617 10-5 eV K-1

To come back to the MKS system, one needs to multiply or divide by ћc , c or ћ depending on
the physics observable. 

1 b (barn) = 10-24 cm2 



13

Special relativity
What is important in relativity, this is what is absolute!

All particles move at the velocity of light (c = 1) but in space-time ! this is an absolute.

t

x

t' A free particle that propagates 
at c=1 along a universe line. 

ds2=gdxdx
Generalized theorem of Pythagoras : 

g= 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


In the Minkowski space, the space-time of special 
relativity :

t ' 2=t 2−x²=t2− t 2=1−2 t 2 ⇒ t= t '  and  x= t '  with =1−2−1/2

Or : t=cosh  t '  and x=sinh  t '  with cosh =  and sinh =

=tanh  is the rapidity, which is not an absolute !  





(0,t,x) is an inertial or Galilean frame 
or non-accelerated frame. 

For a massless particle, a photon,  t=x then t' = 0 everywhere on its universe line   
      is then infinite 


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Special relativity

Let us consider : 1  and 2

 t 1

x1
=cosh 1 sinh 1

sinh 1 cosh 1t '
0   t 2

x2
=cosh 2 sinh 2

sinh 2 cosh 2t '
0 

then :  t 1

x1
=cosh  sinh 

sinh  cosh  t 2

x2
  avec  =1−2

r=tanh =
1−2

1−12

Relative velocity between the inertial frames :

t '=t 1
2−x1

2=t 2
2−x2

2 is called the proper time. This is an absolute quantity !  

This is the special Lorentz  
transformation (Lorentz boost)
between (t1,x1) and (t2,x2)

that describe in two different inertial frames the same particle, 

The absolute motion is the combination of the motion in space and the motion in time.
It always occurs at the velocity of light.

A photon always moves with β = 1, its rapidity is infinite and then x = t regardless
the inertial frame in which it is observed. Its proper time is always zero !

if β
1 
= 1 then β

r
 = 1 whatever

the value of β
2
 .
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Special relativity
Contravariant 4-vectors : 

x=t ,r =t , x , y , z 

P=E , p

a space-time event

4-momentum (E being the total energy)

A=V , A electromagnetic potential 

4-current (charge density – charge current)J = , J 

=0 ,  Dirac matrices 

Q

Covariant 4-vectors : Q=gQ


Q2=Q0−Q  ²=QQ
=gQ

Q=cte

Lorentz invariance of the modulus and the scalar product of 4-vectors : 

When moving from one inertial frame to 
another.

Q1⋅Q2=Q1Q2
=Q10Q20− Q1

Q2=cte

∂= ∂
∂ t

,− ∇ Derivation operators 
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Special relativity
Concerning the energy and the momentum : 

The absolute energy (or the total energy observed at rest) which is called the mass of a particle
 is obtained through :

m2=P2=E 2−p2 ⇒ E 2= p2m2

But as : 

Ep =cosh  sinh 
sinh  cosh m0  E=m p=m

and = x
t
= p

E

we obtain : 

The mass of particle is an absolute quantity. 

A photon is a massless particle since it moves with β=1 in all inertial frames, then its energy and its
momentum are identical. 

kinetic energy  K :  E = m + K , then : K =m −1 and p=K K 2 m
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reaction & decay (disintegration) kinematics

In relativity, the total momentum and total energy are always conserved regardless
of the nature of the collision (elastic or inelastic scattering) or disintegration.
This results in the conservation of the total 4-momentum.

Likewise, in a given inertial frame, the 4-momentum modulus squared remains constant during
the collision or the disintegration.

At a given time, any scalar product of two 4-momenta is invariant under a change of inertial frames.

Exercise : calculate the total energy of a muon emitted in a pion decay
             in the inertial frame bound to the pion, assuming that the neutrino
             emitted can be considered as a massless particle :

--
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Exercise
A neutral particle of mass M carrying a momentum p decays (disintegrates) into an e+e- pair. 
Find the expressions of p

1 
, p

2 
et cosθ

2
 if  θ

1
 , the outgoing electron angle, is known. We will

assume that M>>m
e 
 and that consequently the electron and the positron can be treated as 

massless particles..

p

p
1

p
2

 θ
1
 

 θ
2
 

Analyze the solution for  θ
1
 =0 and for  θ

1
 =900 .

Can we solve that problem if one does not know θ
1
 ?

Show that the emission occurs with a non-zero opening angle ( θ = θ
1
 + θ

2 
) and determine

the expression of the minimal value.  

M
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kinematics 
The inertial frame R is endowed with a Cartesian coordinate system whose (0,z) axis is directed towards
a particular direction, that of a particle beam that collides.
The transverse mass m

T
 of a particle of mass m (which could be produced in the collisions) is defined

from the orthogonal-to-(O,z) projection of its momentum  according to the following equation :

mT
2 = m2pT

2=m2p x
2 p y

2

o

x

y

z

p

pz

pT mT
2=E 2−p z

2

P = E = mT cosh , pT =  p x
2 p y

2 , p z = mT sinh

 = tanh−1z  = tanh−1 pz /E  = ln 
Ep z

mT

 = 1
2

ln 
E pz

E− pz



The particle rapidity   varies from   −∞  to ∞

In another inertial frame R* that moves with respect to R along (o,z) with a constant velocity β
r, 
, one can

show that : * =−r and therefore : d *= d 
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Kinematics
E≈ p   and  mT = ET≈ pT

 = 1
2

ln 
E pz

E− pz

≈1
2

ln 
pp cos
p−p cos

= 1
2

ln 
cos2/2
sin2/2

 =−ln tan /2 = 

sinh = cot cosh = 1/sin  tanh = cos

For a ultra-relativistic particle : 

o

x

y

z

p


is called the pseudo-rapidity 

Total energy in the center-of-mass frame of the
reaction (where the threshold of the reaction is judged).

In the center-of-mass frame, the total momentum is zero.

Ecm = s=P1P2
2= P1cmP2 cm

2= E1cmE2 cm
2

=m1
2m2

22 E1 E21−12 cos1/2      

LHC (pp) : E cm=14 TeV

Tevatron pp : Ecm=1.96 TeV LEP e-e+: E cm=209GeV

On a collider, cosΘ=-1 , and in a ultra-relativistic mode : Ecm=2E1 E2
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Reaction cross section

The cross section is a physical quantity which has the
dimension of a surface. It is related to the probability
 of two particles to undergo a given reaction.
Geometrically, it corresponds to the same area disk,
placed perpendicularly to the projectile propagation direction
and centered on the target particle, when this one is observed
at rest. In other words, it represents the apparent surface
of the target for a given projectile.

By convention, the reaction cross section of two particles is defined in an inertial frame where
one of them is at rest. For two specified particles, it only depends upon their relative velocity,
which is a Lorentz invariant. It follows that the cross section defined this way is a relativistic invariant.

exercise : Show that the relative velocity of two particles is a relativistic invariant. Care should be taken
        to clearly define the relative velocity from the relativistic composition formula of velocities.

Two particles in the input channel 
and n particles in the output channel. 
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Reaction cross section

The reaction rate (1+2-> 3 +...) is given by :

dN 123...
dt

=123... L12

 (1+2 -> 3+...) reaction 
cross section 

[]=m2

often in barn = 10-28 m2 

or  GeV-2 in natural units.

The collider instantaneous
luminosity. It expresses the
number of particle 1 and 2 crossings
per unit area and per second.

[L]=m-2 s-1

often in cm-2 s-1

Example (LHC) : Nominal luminosity  L
pp 

= 1034 cm-2 S-1

 p pWX =140 nb

dN
dt
=1400  inclusive W s-1

called W boson inclusive
production
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Reaction cross section

d  =
24∣M∣2

4 P1⋅P2
2−m1

2 m2
2

dnP=P1P2 ; P3, , Pn2

Differential cross section : production of n particles according to 
specified 4-momenta .

Lorentz invariant matrix element.
Obtained applying the Feynman rules
and the interaction theory.

3n dimensional Lorentz invariant phase
space volume element. It quantifies the 
number of kinematically accessible
states.where :

d nP ; P3, , Pn2 = 
4P−∑

i=1

n

Pi2∏
i=3

n2 d 3 pi

23 2 E i

P i=E i , pi ; i=1 , n2

P1⋅P2
2−m1

2 m2
2=P1cm⋅P 2cm

2−m1
2 m2

2= pcm E cm
with :

4P−∑
i=1

n

P i2
enforces conservation of total energy and total momentum,
in other words total 4-momentum.

exercise : show that relation.
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If only the particle C of interest is detected 
in the outgoing channel :

EC

d 3
d 3 pC

=
d 3

dC d C pC T dpC T

Invariant differential cross section

C azimuthal angle

rapidity of C  (
or pseudo-rapidity if
C is ultra-relativistic)

Transverse momentum of  C

dpC z = mC T coshC d C=EC d Cwith : 

C ,C , pCT
are the natural variables of inclusive
reaction measurement on an 
ultra-relativistic collider.

d  , pT , dpT ,  and d  are the same in all inertial frames moving along the (o, z) collision axis.

d 3 pC = pC T dpC T dC dpC z

Here T means transverse

Inclusive reactions
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Relativistic Quantum Field Theory

In the Lagrangian formalism : 

A quantum field is a physical entity defined everywhere in space-time, that informs about the
presence and the properties of the physical objects that populate it.
It allows to model a Universe containing an infinite number of objects.
It may also be seen as a network of quantum operators that evolve as a function of time and space.

Lagrangian density of a field : 

L x ,∂ x


 x Lagrangian of  x

Lt =∫
V

L x ,∂ x
d 3x

that depends only on time

The field equations of motion are obtained by requiring the stationarity of the action integral : 

S=∫
t1

t 2

Lt dt=∫
t 1

t 2

∫
V

L x ,∂ x
d 4 x

 S=0 ⇒ ∂ L
∂
− ∂

∂ L
∂∂

=0 Euler-Lagrange equations

Because of the space-time symmetry properties, the Lagrangian density must be invariant under any
transformation of the restricted Poincaré group : translations in time and space, spatial rotations and
Lorentz boosts. This leads to the conservation during the motion of the total energy, of the total
momentum, of the total angular momentum and of the total 4-momentum modulus.

Hamiltonian density :

H=
∂
∂ t
∂ L

∂̇
− L

Energy :

E=∫
V

H d 3x



26

Selected example in non-quantum field 
theory : Maxwell equations

A=V , A electromagnetic potential (electromagnetic field) 

J = , J  current source

Fμ ν=∂μ Aν−∂ν Aμ antisymmetric tensor field

L=−
1
4

F μ ν Fμ ν−J μ Aμ
Lagrangian density with an interaction term. 

The properties of the antisymmetric tensor field and the Euler-Lagrange equations applied to this
Lagrangian density lead to the covariant Maxwell equations. 

∂α Fβγ+∂β F γα+∂γ F αβ=0 structural equations

∂α Fαβ=J β contextual equations

exercise :  find the covariant Maxwell equations 
 - by exploiting the properties of the antisymmetric tensor field
 - by applying the Euler-Lagrange equations to the above Lagrangian density

E=−∇ V−∂
A
∂ t

B=rot A
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Real scalar hermitian field of free spin 0 
particles

Can be used to model a neutral pion : 0

L=
1
2
(∂μφ∂μφ−m2φ2)Lagrangian density :

Field equation : (∂μ∂
μ
+m2

)φ=0 Klein-Gordon equation

which may also be obtained by applying the correspondence principle to the relativistic equation :
E2=p2m2

E → i ∂0
p−i ∇

Kinetic energy term Mass term

 x=∑
k

1

2
ak e- i k⋅xak

+ e+ i k⋅x

Field operator : 

particle creation operator
particle annihilation operator

=+

k 0==k 2m2

plane wave evolution

exercise : show
that equation.
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Non-hermitian free field of spin 0 particles 
Can be used to model charged pions :  + ,-

L=
1
2
(∂μφ∂μφ+−m2φφ+)Lagrangian density :

Field equations : ∂∂
m2=∂∂

m2+=0 Klein-Gordon equations

kinetic energy term Mass term

 x=∑
k

1

2
ak e- i k⋅xbk

+ e+ i k⋅x

 Field operator : 

k 0==k 2m2

Negatively-charged particle
creation operator

Positively-charged particle
annihilation operator

then : ≠+
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Free field of spin 1/2 particles
Can be used to model the matter particles : leptons and quarks 

Field equations : i ∂
−m=0 Dirac equations

Kinetic energy
term

Mass term

 x=∑
k
∑

r=1,2 m

ak r

ur k e
- i k⋅xbk r

+ vr k e
+ i k⋅xField : k 0==k 2m2

creation operator of a 
negatively-charged particle
of mass m 

annihilitation operator
of a positively-charged
particle of mass m.

 x

=1,2,3,4
Spinorial index,
not to confuse with
the index in the 
Minkowski space

indice de spin

4-component Dirac spinors

Lagrangian Dirac density :

:  4 Dirac 4-dimensional matrices

Minkowski space index

Dirac free field with 4 complex and non-hermitian components : 

 with =+0

L=i ∂
−m


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Dirac matrices
{ ,}= 2 g 0+= 0 +=−

5=i0123= 0 1
1 0
=5 =  0

0  =
 . p
∣p∣

is the helicity operator
(projection of spin on the
propagation direction)

i

0= 1 0
0 −1   ,  i =  0 i

− i 0    ,   1= 0 1
1 0    ,  2= 0 −i

i 0    ,  3= 1 0
0 −1

are the 2 x 2 Pauli matrices

Dirac representation of  Dirac matrices : 

 i
+=i

 2=
 . p
∣p∣

2

=1 The helicity is an observable whose eigenvalues are  + 1 and -1 
for fermions.
Fermions may be labelled by their helicity.. 

 = 0=+

1−52= 2 1−5 { ,5}= 0

51−5 =− 1−5
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Dirac spinors

u  p , s  u p , r =rs v  p , s  v p , r =−rs

a = aNotation :  p−mu p , s=0 and  pm v  p , s=0

v  p , s  u p ,r =0

then

When the (o,z) spin quantization axis is taken as the propagation axis : z ∥ p

u p ,=1= Em
2m  1

0
p

Em
0
 u p ,=−1= Em

2m  0
1
0
−p
Em


v p ,=1= Em

2m  p
Em

0
1
0
 v p ,=−1= Em

2m  0
−p
Em

0
1


+= 10 , -= 01

spin ½  and - ½
 

u p , s= Em
2m  s

 .p
Em

s 
particles

v p , s= Em
2E   . p

Em
s

s


antiparticles
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exercise :

Show that :  p−mu p , s=0 can be written as :  H u  p , s =E u  p , s 

with : H=⋅p0 m

And consequently : H 2=p 2m2=E2

which was the objective of  Dirac, i.e. : to establish some first order relativistic quantum equations.
The surprise was to discover that these equations had 4 independent solutions : a particle
and its antiparticle, each with two spin states.
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Free field of massive and neutral spin 1 
particles

Proca Lagrangian density : L=−1
4

FFm2

2
A A

kinetic energy mass term 

with : F = ∂ A−∂ A
antisymmetric tensor field

A is a Minkowski 4-vector field, a priori possessing 4 independent components. 

For massive particles (Proca field), the field equations are : 

∂ A=0 which implies that the 4 components of the field are not independent.

∂∂
m2 A= 0 each component is a spin 0 field which is solution of the Klein Gordon

equation.
This will be used to transform a massless vector field into a massive field.
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Free field of massive and neutral spin 1 
particles

annihilation operator of 
a longitudinal boson of 
zero helicity. 

annihilation operator of
a transverse boson
 of  +1 or -1 helicity.

Field : A = A0 , A  in a basis where (o,z) – spin quantification axis - is // to    k

k
1 = 010

0
 k

2 = 001
0
 k = 000

1
 polarisation vectors of the associated wave

A  x=∑
k

1

2  { k m ak L
∑

t=1

2

k
T ak T

e- i k⋅x H. c. }

A0  x=∑
k

1

2  {∣k∣m ak L
e- i k⋅x H. c. }

=k 0=k 2m2
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Free field of massless and neutral spin 1 
particles

Lagrangian density  : L=− 1
4

F F

kinetic energy term

with : F= ∂ A−∂ A
antisymmetric tensor field

A is a Minkowski 4-vector field but only two of its components are independent : 
    -1 and +1 helicity states 
 

∂F = 0 Field equations : 

A  x=∑
k

1

2  {∑t=1

2

k
T ak T

e- i k⋅x H. c. }
Field : in the Coulomb gauge ∇⋅A=0
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Interacting fields :
local gauge theories 

Quantum Electrodynamics QED . 

Let's consider the Dirac Lagrangian density of a free electron : Le= x
 i ∂−m  x

This expression is invariant under any of these transformations :
 i.e. is not sensitive to the choice of the global phase of the field

 ' = ei 

where 

This is only possible if we replace the simple derivatives by covariant derivatives : 

D=∂i q A x
 A x


 is a 4-vector massless field (called gauge) 

that transforms according to the following expression :

A ' x
 = A x

−∂ x
exercise : 

Le
inv= x iD−m  x

    Show that  

is invariant under a local phase transformation

where q is real and  x is an arbitrary real differentiable function. 

One may try to further explore this phase invariance by requiring that the phase choice could be
different in distinct points of the Minkowski space : 

 '  x = ei qx x local gauge (phase) transformation 
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Local gauge theories
The QED invariant Lagrangian density may be written as :

Le
inv= i ∂−m −q  A

to which one needs to add the kinetic energy term of A which is a local gauge invariant. 

m2

2
A A

However the gauge field, the photon must remain massless as :

is not a local gauge invariant.

The photon must be a massless particle to preserve the local gauge invariance.

j= After defining : 

Le
QED= i ∂−m −q j A−

1
4

FF

, the final QED Lagrangian density reads :

free electron
field

interaction
term

free gauge field

j is the electron current, q being the electron charge. 

One may also notice that the electron charge – which determines its coupling to the photon - 
is intimately related to freedom of local gauge (phase) choice of the field.   

exercise : show that the mass term 
of a photon is not locally gauge invariant.
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Local gauge theories
Field equations : ∂F =q j Contextual Maxwell equations

 However : ∂∂F =0 ⇒ ∂ j=0  then  j is a conserved current and the volume integral  
of its time component is a constant of motion. 
The total charge is conserved ! 

Summary : by requiring the local gauge invariance through a transformation of the
   U(1) group, one obtains :

 - a relativistic quantum theory which describes the interaction between photons and 
   electrons (but also of positrons) :
 - the Maxwell equations ; 
 - a principle that forces the photon to remain massless ;
 - the conservation of the electron current ;
 - the conservation of the charge .

exercise : show that the volume integral of the
charge is a constant of motion.
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The standard model
We have seen that a conserved current is related to an internal symmetry acting locally
on the field phase : local gauge transformation.

But at the beginning of these lectures we saw that there exist :

 - a general invariance of the U(1) type (e -> e , quark -> quark  ...) ;
 - a general weak isospin invariance of the SU(2) type ; ( e <-> neutrino ...)
 - a general color invariance of quarks of the SU(3) type ; ( q

red
 <->  q

blue
 ...)

e

e


L

'

= e
i g2 x

.

2 e

e


L

SU(2) symmetry 3 matrices 
Pauli matrices

 ' = e
ig1

Y
2
x
U(1) symmetry Y is the weak hypercharge

SU(3) symmetry qr
'

qv
'

qb
' = e

i g3 a x
⋅

2 qr

qv

qb
 8 matrices  Gell-Mann matrices.



40

Standard model : the free fields
Experimentally, ultra-relativistic electrons and neutrinos produced in beta decays (weak interaction)
are always emitted in a negative (-1) helicity state (parity violation). 
For ultra-relativistic particles, the negative helicity projector reads :  

1
2
1−

 . p
∣p∣
=1

2
1− ≃1

2
1−5  which is the left-handed chirality

 projector

But contrary to helicity projectors, chirality projectors are Lorentz invariants and consequently
they are used instead of the helicity projectors to build the free fields in the Lagrangian density.

Le=e

e


L

=1
2
1−5e

e
 isospin :  T=1/2

As experimentally, the weak interaction seems to apply only to the left-handed chiral fields :

same thing for : and 

L1=u

d


L

=1
2
1−5u

d
 same thing for the two other quark 

families.
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Standard model : the free fields
The remaining parts (right-handed chiral fields) are isospin singlets T=0

Re=
1
2
15e , Ru=

1
2
15u , Rd ....

Color is an additional index which is used to designate the quarks fields L1=u

d 
  avec =r ,b , g
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Standard model : interaction of fermions

L fermions
SM = ∑

F=Ll , Li , R f

F iD F

Complete Lagrangian density of free fields and their interactions  : 

using the covariant derivative  : D= ∂i g1
Y
2

Bi g2


2
W i g 3


2
G

where : 
B is  the (spin 1) gauge boson of weak hypercharge interaction

W 
i are the three (spin 1) gauge bosons of weak isospin interaction 

G
i

are the eight (spin 1) gauge bosons (gluons) of strong color interaction

Until now, all these particles are massless ! as : 
-the mass terms of the gauge bosons are not locally gauge invariant ( already seen p. 37 ) 

m =m 1
2
1−51

2
15=m R Lm L R-concerning the fermions : 

U(1) SU(2)which is not a local gauge invariant.
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Feynman Graphs & Rules
Mnemo-graphic technique which helps to provide the expression of invariant scattering matrix elements.
This technique can be totally established within the covariant quantum theory of perturbation.
(TD Lee, Particle Physics and Introduction to Field Theory p 62).
(S. Weinberg, The Quantum Theory of Fields, Vol 1 , p. 259).

Lagrangian density of two interacting fields :
L=L1L2L12

free field densities

interaction density

Interaction Hamiltonian density : Usually the interaction Lagrangian density contains no time 
derivatives of the fields, then : 

H = H 1H 2H 12 with :  H 12 =−L12

Interaction Hamiltonian :

H I =∫
V

H 12 d 3x
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Feynman Graphs & Rules : scattering 
matrix (S matrix)

The time evolution of a physical state is obtained by  : 

|t >=U t , t0 |t 0>

where : U t , t0 is the time evolution operator from t
0
 to t. 

In classical quantum mechanics, this operator is represented by the Green function.

The S scattering matrix is then defined as :  S = lim
t 0-∞
t  ∞  

U t , t 0

In the covariant quantum theory of perturbations, one can show that :

U t , t0 = 1−i∫
to

t

dt1 H I t1−i 2∫
to

t

dt1∫
t o

t1

dt2 H I t 1H I t 2...

first order second order 

The scattering probability amplitude from |i > to |f > is given by :  

< f | S | i > = S fi = fi2
44 P f−P i 

−i M fi
N

Invariant matrix element that enters
the calculation of the cross section

Normalisation factor Total four-vector conservation
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Feynman graphs and rules
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Phenomenology of Standard Model

The interaction terms induced by the weak hypercharge U(1) symmetry :

Examined for the first lepton family (similar for each family) : 

L ferm
e

U 1=− Re

g1

Y R

2
B Re

Le 

g1

Y L

2
 B Le

here the hypercharge depends upon the lepton species and its chirality  
                                              (like an electric charge depends 
                                              upon the particle species ...)

=−
g 1

2
[Y R Re

 ReY L Le 
Le]B

Le 
Le=  eL

, eL 
 e L

e L
= e L 

 e L e L 
 e L

L ferm
e U 1=−

g 1

2
[Y R e R 

 e RY L  e L 
 e L e L 

 e L]B

leptonic currents B gauge boson
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Phenomenology of Standard Model

L ferm
e

SU 2 = Le i [i g2


2
]
W  Le

Terms induced by the weak isospin SU(2) symmetry : 

L ferm
e

SU 2 =−
g2

2
 eL

, eL 
 W 

3 W 
1
−i W 

2

W 
1
i W 2

−W 
3  e L

e L


The charged weak bosons are defined by : 

W +
= W 

1
−i W 

2
/2 W -= W 

1i W 
2 /2

The Lagrangian then reads : 

L ferm
e SU 2 =−

g 2

2
[ e L 

 e L W 
32 e L 

 e L W 
+

 2 e L 
 e L W 

- − e L 
 e L W 

3 ]

leptonic charged weak 
current

leptonic charged weak current electron neutral current 

neutrino neutral current 
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Phenomenology of Standard Model
We notice that neutrinos interact as neutral currents with both gauge bosons :

[−
g1

2
Y L B−

g2

2
W 

3 ] e L 
 e L

hence the idea of introducing two new and orthogonal gauge bosons of physical interaction : 

A=
g2 B−g1 Y L W 

3

g 2
2g1

2Y L
2

Z =
g1Y L Bg2 W 

3

g 2
2g1

2 Y L
2

B=
g 2 Ag1 Y L Z 

g 2
2g1

2 Y L
2

W 
3 =
−g1 Y L Ag 2 Z 

g 2
2g1

2 Y L
2

For A to be interpreted as the photon field , we would need that :

−
g1

2
Y R B  e R 

 e R  −
g1

2
Y L B

g2

2
W 

3
 e L 

 e L

contains : −A−e e R 
 e R− e e L 

 e L=e e 
 e A
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Phenomenology of Standard Model
It's possible if : 

e=
g1 g2

g2
2g1

2
Y R= 2Y L=−2Y L=−1

A= cosw Bsinw W 
3 Z =−sinw Bcosw W 

3

sin w=
g1

g 2
2
g1

2
cosw=

g2

g 2
2g1

2

In this scheme, the unification of the weak hypercharge and weak isospin interactions takes place 
leading to the physical electromagnetic and weak neutral interactions. 

g 2=
e

sinw

g 1=
e

cosw

Both the weak hypercharge and weak isospin 
interactions feature coupling constants that are
stronger than the electromagnetic interaction
constant ! = e2

4
≃

1
137

1=
g1

2

4
≃ 1

105 2=
g 2

2

4
≃ 1

32
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Electroweak interaction Lagrangian of 
fermions 

LLB , l =
  g2

22
∑

l=e , ,
[ l

1−5l
W 

-  l
1−5l W 

+]

         
  g2

22
∑

q=u ,c , t
∑

q '=d , s , b

V qq' [ q '
1−5q W 

-  q
1−5q ' W 

+ ]

         
    g2

2cos
∑

k

[ k 
T 3−2Qk sin2w−T 3

5k ] Z 

         e∑
k

Qk k 
k A

         where :Qk  is the charge number

leptonic charged current
weak interaction

hadronic charged current
weak interaction

weak neutral current

electromagnetic current
Q = T 3 

Y
2

The electrical charge is made of weak hypercharge
and weak isospin ! 
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But where are the particle mass terms ?

There's none for the time being as they do not respect local gauge invariance.

The idea is to dynamically generate them through an appropriate interaction with vacuum or 
in other words the Universe ground state. 

To achieve this goal, new non hermitian scalar fields (called Higgs Fields) are introduced. They 
form a new weak isospin doublet  :

Φ = (Φ
+

Φ0) , ∣Φ∣
2
=∣Φ

+
∣
2
+∣Φ

0
∣
2 , T = 1/2 and Y = 1( extracted from the Glashow formula)

+=
1i2

2
0=

3i4

2
charged spin 0 boson neutral spin 0 boson

Doing so, 4 new degrees of freedom are introduced in the theory.
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The mass of elementary particles

A new field (Higgs field) is present
everywhere in the space vacuum.

An elementary particle propagating in vacuum
is immersed in that field.

Through interaction,
the Higgs field clusters
around this particle, inducing
a potential energy that takes
the form of a mass term.
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The Higgs, Englert and Brout mechanism 

∣D∣
2=∣∂i

g 2

2
 . W i

g 1

2
Y B∣

2

Kinetic energy term of Higgs fields with usage of covariant derivative :

Novelty : a potential energy term resulting from the auto-interaction of the Higgs Fields is introduced .
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An important thing is to note that the neutral component of the Higgs fields does not couple to 
the photon :

In this expression, the gauge bosons have been replaced by the physical interaction bosons.
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The Higgs field doublet may also be written as a isospin rotation of a particular state :  

But this exponential may be eliminated by applying a particular
SU(2) gauge transformation called the unitary gauge
transformation.
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Three degrees of freedom have disappeared. 
In fact, they become the missing longitudinal 
polarization components of the weak interaction 
bosons.

Let's have a look at the ground state of the Higgs field that minimizes the vacuum energy :
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represent the quantum fluctuations
around the minimum.
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In the unitary gauge, we may rewrite the Higgs doublet as  : 

If  is a constant, then the associated kinetic energy is zero (field derivative) 

Let's compute the average value of the potential energy induced by the Higgs field auto-interaction
in vacuum :
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This potential energy shows a local unstable minimum at :  =0

and a second stable minimum at  :  

2=
2

h
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which corresponds to 
a non zero expectation
value of the Higgs field.

In other words to minimize the total vacuum energy, the Higgs
field develops through auto-interaction a non zero expectation
value which is constant in the Universe.
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vacuum=


2 h 01 The vacuum expectation value is not gauge invariant. This corresponds

to a spontaneous symmetry breaking of SU(2)xU(1) -> U(1) 

There remains a real scalar field of spin 0 :  x  which is the boson of Higgs, Englert
and Brout (usually called the Higgs
boson) which has been sought 
for more than 40 years !
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After symmetry breaking, the interaction between the Higgs fields and the interaction
 bosons is going to generate mass terms :
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To generate the fermion masses, other interaction terms have to be added to the Lagrangian :
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ml = f lwhere : is the mass term of the l fermion.
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Lagrangian of free fields
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ml = f l and : =246 GeV

free Lagrangian of W bosons 

free Lagrangian of Z boson

free Lagrangian of photon

free Lagrangian of massless neutrinos free Lagrangian of fermions
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Higgs boson Lagrangian
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where : m= 2 h is the Higgs boson mass which is not directly predicted by the theory

Interaction terms between leptons and the Higgs boson

auto-interaction of
Higgs boson

Higgs boson 
mass term

Kinetic energy term
of Higgs boson

interaction term between Higgs boson and W and 
Z bosons

or equivalently :  =
m
2

  and h= 1
2

m

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2
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Le boson de Higgs

Excitation of the Higgs field

 (LHC pp collisions)

The perturbation propagates
, this is a Higgs boson,
 which decays shortly after
into many channels
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Z boson at LEP

M
z
 = 91.1876 GeV (+/- 2.1 MeV)

Less than three families with
neutrino masses < 45 GeV 

Zq q

Z e- e+
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Hadron production in e+e- scattering
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W Production at the Tevatron

W: decays into single charged 
lepton + neutrino 

high pT electron or high pT
 muon 

high ET
miss (== neutrino p

T 
)

hadronic recoil momentum < 15 GeV
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W transverse mass measurement at Tevatron 

mT = 2 pT
e pT

− pT
e⋅ pT

 

transverse mass of W (beware this definition is different from the one given p. 19) 
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e 

V-A structure of charged weak current measured on 
HERA collider at DESY in Hamburg

In the Standard Model and at high energy, left-handed helicity positrons and right-handed
helicity electrons do not take part to the charged current interaction.


	Title
	Diapo 2
	Diapo 3
	Agenda
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66

