CARACTÉRISATION DE DÉTECTEURS DIAMANTS POLYCRISTALLINS POUR LA CONCEPTION D'UN HODOSCOPE POUR LE CONTRÔLE EN LIGNE DE L'HADRONTHÉRAPIE.

Anissa BOUKHEMIRI LPSC, Physique des Applications Médicales Encadré par Marie-Laure GALLIN-MARTEL Février-Août 2016

Laboratoire de Physique Subatomique et de Cosmologie

- Introduction
- Problématique et objectifs du stage
- Matériel et Méthodes
- Résultats
- Conclusion
- Perspectives

PLAN

- Introduction
 - Contexte
 - Principe de l'hadronthérapie
- Matériel et Méthodes
- Résultats
- Conclusion
- Perspectives

CONTEXTE

- **1896** : premier patient traité pour un cancer de l'estomac par Rayon X.
 - → Naissance de la **radiothérapie conventionnelle**
- 1994 : construction du premier centre à Chiba au Japon destiné aux traitements des cancers par ions carbone.
 - →Naissance de l'hadronthérapie
- Depuis les années 2000 :
 - 30 centres de protonthérapie
 - 6 centres de carbone-thérapie

Dans le monde

dont **2 centres de protonthérapie** et **aucun de carbone-thérapie** en <u>France.</u>

PRINCIPE DE L'HADRONTHÉRAPIE DANS LE TRAITEMENT DES CANCERS

- Approche fondamentale :
 - Particules accélérées acquièrent de l'énergie
 - Interagissent dans la matière (corps humain) par :
 - collisions inélastiques électroniques,
 - réactions nucléaires → gammas prompts
 - ralentissement par rayonnement de freinage.

→Dépôt d'énergie dans le milieu suivant l'équation de Bethe et Block :

$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{nq^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2\beta^2}{I - (1 - \beta^2)}\right) - \beta^2\right]$$

→ Dépôt d'une grande quantité d'énergie en fin de parcours sur une faible distance : pic de Bragg

PRINCIPE DE L'HADRONTHÉRAPIE DANS LE TRAITEMENT DES CANCERS

Approche biologique

Une balistique plus précise

�Une efficacité biologique relative (EBR) EBR = D_{ref} / D_{test}

 $EBR_{ion} = 3 - 4$

PRINCIPE DE L'HADRONTHÉRAPIE DANS LE TRAITEMENT DES CANCERS

• Approche thérapeutique :

- la chirurgie
- la chimiothérapie (médicaments)
- rayonnements ionisants :
 - la radiothérapie
 - l'hadronthérapie : traitement de tumeurs profondes

→Avantage de l'hadronthérapie :

Dépôt de dose localisé \rightarrow cellules saines ou organes à risques préservés

- Protonthérapie : tumeurs ophtalmiques (64MeV), cerveau (260MeV)
- Carbone-thérapie : tumeurs inopérables ou radiorésistantes proches de tissus radiosensibles.

PLAN

- Introduction
- Problématique et objectifs du stage
- Matériel et Méthodes
- Résultats
- Perspectives

PROJET CLARYS

→ Contrôle qualité de la dose déposée en ligne via des particules secondaires : les gamma prompts

Collaboration de laboratoires du quart sud-est:

Lille Amiens Rouen Reims Nancy-Metz Caen Paris Strasbourg Crétei **Versailles** Ronnes Orléans-Tours Dijon Besançon Nantes •IN2P3 (Institut National de Physique Nucléaire et de Physique des MOR **CPPM** (Centre de Physique des Poitiers Particules de Marseille) Limoges >IPNL (Institut de Physique Clermont Nucléaire de Lyon) Ferrand Grenoble LPC (Laboratoire de Physique) Corpusculaire de Clermont-Ferrand) Bordeaux >LPSC (Laboratoire de Physique Subatomique et de Cosmologie de Aix-Marseille Grenoble) Toulouse Montpellier **CREATIS** (Centre de Recherche et Nice d'Application en Traitement de l'Image et du Signal de Lyon) LIRIS (Laboratoire d'InfoRmatique en Image et Systèmes

Objectifs du LPSC :

Mettre au point un démonstrateur de moniteur faisceau d'ions de grande surface constitué de plusieurs diamants poly-cristallins.

Particules):

•

PROBLÉMATIQUE

- Contrôle en ligne via une caméra Compton ou une gamma caméra couplées chacune à un hodoscope. (CLaRyS).
 - → Détection des gammas prompts et des ions incidents

Caméra gamma : surveiller en temps réel le parcours des photons gammas

Caméra Compton : contrôle 3D et en temps réel la position du pic de Bragg via les rayons gammas

PROBLÉMATIQUE

Hodoscope à fibres scintillantes :

- localise les particules chargées incidentes, temporellement et spatialement.
- <u>Inconvénients de l'actuel</u> <u>hodoscope :</u>
 - → Taux de comptage (10⁷ p/s par voie)
 - → Résistance aux irradiations

Diamants :

- Poly-cristallins
- Mono-cristallins

Propriété	Diamant	Silicium	
Densité [g.cm ³]	3,52	2.33	
Gap [eV]	5,48	1,12	
Energie de création e-t [eV]	13,1	3,62	
Signal moyen MIP [MIP]	36 e-/µm	89 e-/µm	
Résistivité [Ω.cm]	10 ¹³ - 10 ¹⁶	10 ⁵ - 10 ⁶	
Conductivité thermique [W.cm ⁻¹ .K ⁻¹]	>1800	1.48	
Energie de déplacement [eV]	43	25	
Mobilité des électrons [cm ² .V ⁻¹ .s ⁻¹]	1900	1450	
Mobilité des trous [cm ² .V ⁻¹ .s ⁻¹]	2300	505	
Tension de saturation [V.cm ⁻¹]	107	3.105	

PROBLÉMATIQUE

Cahier des charges

Faisceaux :

Protonthérapie (Cyclotron IBA/C230):

o durée du bunch : 1 à 2 ns
o durée entre les bunchs : 10 ns
o 200 protons/bunch en routine clinique

Carbone-thérapie (HIT/CNAO):

o durée du bunch : 20-40 ns
o durée entre les bunchs: 200 ns
o 10 ions/bunch en routine clinique

Hodoscope :

un taux de comptage de l'ordre de :

o100 MHz pour l'ensemble du détecteur
o ~10 MHz par voie

<u>une résolution temporelle : inférieure à la</u> centaine de ps

une résolution spatiale de l'ordre de : 1mm

<u>une résistance aux radiations :</u> d'environ 10¹¹ protons/cm²/traitement, si on estime que le nombre de séances par jour est de l'ordre de 20 cela conduit à 10¹⁴ protons/cm²/an.

OBJECTIFS DU STAGE

- Caractérisation de détecteur diamants poly-cristallins
 - Développement de banc de tests
 - Caractérisation avec une source radioactive
 - LPSC (Laboratoire de Physique Subatomique et de Cosmologie)
 - Caractérisation sous faisceaux
 - ESRF (European Synchrotron Radiation Facility) de Grenoble
 - GANIL (Grand Accélérateur National d'Ions Lourds) de Caen
 - Analyse de données

PLAN

- Introduction
- Problématique et objectifs du stage
- Matériel et Méthodes
- Résultats
- Conclusion
- Perspectives

Matériel et Méthodes

PROJET MONIDIAM

• Début 2015

Phase de test des diamants poly-cristallins.

<u>Etape 1</u> : métallisation des diamants poly-cristallins

1 x 1 cm² x 300 µm

1 x 1 cm² x 500 µm

Matériel et Méthodes

PROJET MONIDIAM

- Etape 2 : positionner le diamant dans le porte échantillon.

 <u>Etape 3</u>: Relier les détecteurs à des préamplificateurs puis au système d'acquisition <u>WaveCatcher</u> (LAL-CNRS/IRFU-CEA).

Matériel et Méthodes

PROJET MONIDIAM LPSC

- <u>Banc de test alpha :</u>
 - Source d'Américium 241 de 5.4 MeV (activité : 6.41kBq)
 - Particules peu pénétrantes (≈12 µm pour le diamant).

PROJET MONIDIAM LPSC

Résultats : Signal théorique vs signal expérimental

PROJET MONIDIAM

<u>**Résultats :**</u> Signal d'un détecteur diamant poly-cristallin vs signal d'un détecteur diamant monocristallin

→Diamant poly-cristallin

PROJET MONIDIAM LPSC

<u>**Résultats</u>**: Comparaison de signaux issus de diamants poly-cristallins</u>

PROJET MONIDIAM LPSC

Résultats :

Collection de charges sur une des faces du diamant : observation du phénomène de dépolarisation du diamant (piégeage, recombinaison).

Variation de la fréquence des événements détectés

Source : Am241_Diamant : 4cm2_HT : +500V_Seuil : -10mV_Face 2_préampli CIVIDEC

Variation d'amplitude des signaux détectés

PROJET MONIDIAM LPSC

Résultats :

• Claquages : phénomène qui se produit dans un isolant quand le champ électrique est plus important que ce que peut supporter cet isolant.

PROJET MONIDIAM LPSC

Résultats :

• Courants de fuite Face 1

Face 2

0.5 x 0.5

cm² x 300

μm

541 pA

24.7 nA

68.5 nA

123,8 nA

196,5 nA

0,279 μA

HT (V)	Courant de fuite					Courant de fuite				
	Poly-cristallins				Mono- cristallin		Poly-cristallins			
	2 x 2 cm ² x 500 μm	1 x 1 cm ² x 500 μm	1 x 1 cm ² x 300 μm	0.5 x 0.5 cm ² x 300 μm	0.45 x 0.45cm ² x 518 μm	HT (V)	2 x 2 cm ² x 500 μm	1 x 1 cm ² x 500 μm	1 x 1 cm ² x 300 μm	0.4 cm
0	0,4 pA	0,99 pA	88,173 nA	0,548 nA	3,45 pA	0	1,35 pA	0,67 pA	105.5 nA	54
100	1,28 pA	2,72 pA	7,91 µA	26,0 nA	2,9 pA	100	2,3 pA	1,21 pA	6,352 μA	24
200	2,21 pA	4,32 pA	21,383 µA	70,7 nA	2,59 pA	200	5 pA	1,64 pA	15,687 μA	68
300	3,77 pA	6,21 pA	52,82 μA	131,3 nA	2,2 pA	300	6,45 pA	2,46 pA	27,656 μΑ	12
400	6,23 pA	7,16 pA	76,452 μA	198,7 nA	2,29 pA	400	15,3 pA	3,16 pA	51,18 µA	19
500	10,9 pA	9,58 pA	99,81 µA	0,260 µA	2,98 pA	500	42,9 pA	5,71 pA	74,253 μΑ	0,2

→Qualité du diamant et de la métallisation

Monocristallin

0.45 x

0.45cm² x 518 μm

0,42 pA

0,52 pA

1,6 pA

4,5 pA

19,5 pA

22,3 pA

PROJET MONIDIAM

Dispositif expérimental :

ESRF

- Expériences menées en Mai 2016 ligne ID21
- Faisceau de photons de 8.5 keV.

PROJET MONIDIAM

ESRF

Dispositif expérimental :

- Expériences menées en Mai 2016
- Faisceau de photons de 8.5 keV
- Diamants poly-cristallins et monocristallins (MONODIAM).

PROJET MONIDIAM

ESRF

<u>Résultats :</u> Signal théorique vs signal expérimental

PROJET MONIDIAM ESRF

<u>Résultats :</u>

• Signaux collectés sur chacune des faces du diamant

Etude de la fréquence des événements détectés

Etude de l'amplitude des signaux détectés

PROJET MONIDIAM ESRF

<u> Résultats :</u>

Résolution en temps entre deux faces d'un détecteur diamant (Méthode du DFC numérique)

PROJET MONIDIAM ESRF

<u>Résultats :</u>

• Résolution temporelle des diamants

		Dimensions	Préamplis. Utilisés	HT (V)	Amplitude (mV)	Bruit (mV)	Rapport signal sur bruit	Résolution en temps entre les deux faces du diamant (ps)
	Diamant	0.45 x 0.45	Cividec	-500	134,3	2,812	47,76	26,7
				500	148,2	2,229	66,48	25,1
				-500	54,63	2,02	27,04	48,84
	Mono-cristallin	cm ² x 518 μm	DDAIII	500	52,76	1,987	26,55	50,11
				-500 126,5 3,312 38,19	38,19	53,8		
			LFSC	500	167,1	4,005	41,72	48,41
		0.5 x 0.5 cm ² x 300 μm	Cividec	300	-56,98	2,863	19,9	49,22
p	Diamants poly-cristallins	10 x10 cm ² x 500 μm	Cividec	300	-55,74	2,64	21,11	71,94
		10 x 10 cm ² x 500 μm	Cividec	300	-55,91	3,569	15,66	79,22

PROJET MONIDIAM ESRF

Résultats :

• Radiographie des détecteurs diamants

→ Homogénéité : NON → Observation de joints de grains

→Explique les problèmes de collection de charges observés avec la source alpha.

PROJET MONIDIAM GANIL

Dispositif expérimental :

- Expériences menées en juillet 2016
- Faisceau d'ions carbone de 95MeV/nucléon

PROJET MONIDIAM GANIL

<u>Résultats :</u>

Efficacité de détection des ions

$$eff D1 \Rightarrow \frac{D1D2}{D2} = 2972/3685 = 80.7\%$$
 $\frac{D1D2 PM}{D2PM} = 2943 / 3637 = 80.9 \%$

$$eff D2 \Rightarrow \frac{D1D2}{D1} = 2972/4139 = 71.8\%$$
 $\frac{D1D2 PM}{D1PM} = 2943 / 4063 = 72.4 \%$

PROJET MONIDIAM GANIL

<u> Résultats :</u>

Résolution en temps entre deux détecteurs diamant

PLAN

- Introduction
 - Le projet et son contexte
 - intérêt général dans le domaine de la physique médicale
- Problématique et objectifs du stage
- Matériel et Méthodes
- Résultats
- Conclusion
- Perspectives

CONCLUSION

- Diamants poly-cristallins présentent des défauts intrinsèques
 - Problème mis en évidence avec une source alpha mais pas gênant pour notre application : moniteur faisceau en hadronthérapie
- Résultats importants pour notre application
 - Résolution en temps :
 - Objectif : < à 100 ps
 - →Objectif atteint : résolution max 80 ps (confirmée par l'ensemble des bancs de tests en laboratoire et sur faisceaux)
 - Efficacité de détection des ions :
 - 70 80 % (résultats préliminaires –analyse des données du GANIL)

PLAN

- Introduction
 - Le projet et son contexte
 - intérêt général dans le domaine de la physique médicale
- Problématique et objectifs du stage
- Matériel et Méthodes
- Résultats
- Conclusion
- Perspectives
 - Hodoscope diamant
 - Electronique dédiée
 - Futures expériences

Perspectives

ARCHITECTURE DU FUTUR HODOSCOPE DIAMANT

- taille de la mosaïque : 15cm x 15cm
- lecture double face (transparence)
- taille des détecteurs : 2cm x 2cm (pour un diamant polycristallin, en stock chez Element 6)
 →56 détecteurs
- nombre de pistes par détecteur : 32 de 1mm
 - \rightarrow 1800 voies de lecture

ELECTRONIQUE DÉDIÉE

FUTURES EXPÉRIENCES

Centre Lacassagne de Nice

•Faisceau de protons de 64MeV

LPSC

→Faire un premier démonstrateur pour 2019

BIBLIOGRAPHIE

- <u>http://cds.cern.ch/record/1738115/files/vol23-</u> <u>issue4-p139-f.pdf</u> : plan du ganil
- [Weiss, 2014], Christina Weiss. A CVD diamond Detector (n,α) Cross-Section Measurements, Detectors and Experimental Techniques ; Nuclear Physics – Experiment, CERN-THESIS, 2014, p.155
- <u>http://cours.lal.in2p3.fr/EnsUniv/coursSchuneStocchi/cour</u> <u>s2.pdf</u>: MIP

ANNEXE 1 : RCMI

Plan de traitement avec 8 champs d'irradiation (à gauche) et avec 2 champs d'irradiation (à droite)

ANNEXE 2 : MÉTALLISATION GROUPE PLASMA

Épaisseur de la métallisation : 50-60 nm

Les étapes de métallisation :

Étape 1 : Décapage chimique

→ Application d'un mélange d'acide sulfurique, chlorhydrique et phosphorique à une température de 100°C.

Étape 2 : On serre le diamant dans le porte échantillon qui nous permettra de donner la dimension de la pastille de métallisation.

Étape 3 : Pompage

 → Le diamant est mis sous vide pendant quelques heures au minimum.
 Étape 4 : Nettoyage du diamant avec un plasma composé d'argon et d'hydrogène. On polarise la surface du diamant négativement.

Rq : Possibilité d'utiliser des magnétrons à la place du mélange Argon/hydrogène

Étape 5 : Nettoyage des cibles d'aluminium avec de l'argon pur. Polarisation de cibles à - 300V. Cette étape dure environ 10 min.

Étape 6 :Deuxième nettoyage de la surface de diamant en argon pur pour éliminer toute trace d'hydrogène. Cette étape dure également 10 min environ .

Étape 7 : Étape de dépôt.

 \rightarrow On stoppe la polarisation du diamant et on démarre celle de l'aluminium. L'aluminium adhère au diamant par pulvérisation.

Rq : La pulvérisation permet un rendu plus homogène des atomes d'aluminium comparé à la méthode d'évaporation.

<u>Contrôle de l'épaisseur du dépôt d'aluminium :</u>

Ce contrôle ce fait par rapport à une calibration i.e un dépôt de référence. Calibration : 100 nm correspond 30 min. On déduit alors notre épaisseur par rapport à un temps suivant une règle de trois.

<u>Nettoyage du diamant post utilisation</u> : acétone + alcool.

ANNEXE 3 : THÉORÈME DE RAMO

Pour un condensateur plan, le déplacement d'une charge entre deux électrodes parallèles distantes de induit un signal sur ces électrodes : $\frac{dq}{d} = -\frac{x}{d}$ pour des électrons.

Avec:
$$I = \frac{dq}{dt} et v_{dr} = \frac{dx}{dt}$$

Avec : v_{dr} : la vitesse de dérive des porteurs ce charges (ici les électrons)

d : epaisseur du dondensateur (ici le diamant)

q : charge du porteur

D'où :
$$I = -\frac{q}{d} \times v_{dr}$$
 Théorème de Ramo-Shockley

Cette formule représente le courant instantané induit sur les électrodes.

Si on néglige les charges d'espace, $v_{dr} = \mu E$

Avec μ : la mobilité des porteurs de charges E: le champ électrique

I

On a alors :

$$= -\frac{q}{d} \times \mu E$$

Dans notre détecteur diamant, le courant est fonction des effets de pièges, de recombinaison...

De ce fait : $I(t) = I_0 e^{-\frac{t}{\tau}}$

Avec τ: le temps de vie des porteurs de charges

Il faut savoir que pour les diamants parfaits, τ est infini donc : $I(t) = I_0$. Pour les diamants polycristallins le terme en exponentielle est dominant et les charges se recombinent ou sont piégées.

ANNEXE 4 : DISCRIMINATEUR À FRACTION CONSTANTE

Les différentes étapes :

- 1. calculer la ligne de base un peu en amont du signal proprement dit (50 ou 100 points d'échantillonnage dans notre cas),
- 2. rechercher le maximum de l'amplitude du signal,
- retrancher la ligne de base et diviser par 2 (c'est à dire 50%) puis rajouter la ligne de base.
 On obtient ainsi la valeur du seuil dépendant de l'amplitude du signal Figure 37
- 4. on localise les deux points qui entourent la valeur calculée du seuil en 3, et par interpolation linéaire on déduit la valeur temporelle t,
- 5. on fait ensuite un mesure de Δt (Δt =t2-t1) entre 2 signaux (issus de deux détecteurs différents ou de deux faces d'un même diamant) provenant des 2 préamplificateurs : l'écart type de cette distribution pour un grand nombre d'événements (résolution temporelle) est alors bien meilleur, entre 26 et 80 ps pour le diamant le moins performant.

50

ANNEXE 5 : MIP

 $-\frac{dE}{dx} = \frac{4\pi}{m_{e}c^{2}} \cdot \frac{nq^{2}}{\beta^{2}} \cdot \left(\frac{e^{2}}{4\pi\varepsilon_{0}}\right)^{2} \cdot \left[\ln\left(\frac{2m_{e}c^{2}\beta^{2}}{I-(1-\beta^{2})}\right) - \beta^{2}\right] \quad \Rightarrow \text{Bethe et Block}$

$$-\frac{dE}{dx} = kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 - \frac{1}{\beta^2} \right]$$

- « descente » : effet classique : « plus la particule va lentement plus elle a le temps d'ioniser le milieu »
- Minimum large situé vers βγ ~4
- Remontée relativiste : le champ électrique transverse est proportionnel à γ ; quand l'énergie augmente les collisions à grandes distances sont de plus en plus importantes.
- Plateau : quand le paramètre d'impact devient de l'ordre des distances inter-atomiques les effets de polarisation du milieu deviennent importants.

2ln(γ) remontée relativiste

Particule au minimum d'ionisation $\beta\gamma$ -4 (dE/dx)_{min}=MIP~2MeV g⁻¹cm²

petit !

Impulsion du proton (GeV/c)

ANNEXE 6 : ESRF

Setup MI-1243 Micro-XRD end station

May 2016

NHQ on serial line

BCDU8 on Ethernet

Last settings scope

How to set F1 average, summed, 64 sweeps

ANNEXE 7 : GANIL

